Tìm x
A) (x+2)(x^2-2x+4)-x(x^2-2)=15
B) (x-1)^3+(2-x)(4-2x+x^2)+3x(x+2)=17
Thank kiu trước nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x\left(5-2x\right)-2x\left(1-x\right)=15\\ \Leftrightarrow5x-2x^2-2x+2x^2=15\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=5\)
Vậy x = 5 là nghiệm của pt.
b) \(\left(3x+2\right)^2+\left(1+3x\right)\left(1-3x\right)=2\\ \Leftrightarrow\left(9x^2+12x+4\right)+1-9x^2=2\\ \Leftrightarrow12x+5=2\\ \Leftrightarrow12x=-3\\ \Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=-\dfrac{1}{4}\) là nghiệm của pt.
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)
\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)
\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)
\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)
\(A=2x+22\)
______________________
\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)
\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)
\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)
\(B=-8x-23\)
_________________
\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)
\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)
\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)
\(C=6x-5\)
a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:
Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15
Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15
Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15
Kết quả cuối cùng:
A = 5x + 19
b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:
Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6
Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6
Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1
Kết quả cuối cùng:
B = -4x - 11
c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:
Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)
Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1
Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1
Kết quả cuối cùng:
C = 6x - 5
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
a: =>x^2-25-x^2-3x=10
=>-3x=35
=>x=-35/3
b: =>4x^2-9-4(x^2+4x+4)=5
=>4x^2-9-4x^2-16x-16-5=0
=>-16x-30=0
=>x=-15/8
c: =>9x^2+45x-9x^2+4=7
=>45x=3
=>x=1/15
d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8
=>8x=7
=>x=7/8
\(a,\Leftrightarrow\left(5x+1\right)\left(x-4\right)-\left(x-4\right)=0\\ \Leftrightarrow\left(x-4\right)\left(5x+1-x\right)=0\\ \Leftrightarrow5x\left(x-4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x^2-10x-2x^2-3x=26\\ \Leftrightarrow-13x=26\\ \Leftrightarrow x=-2\\ c,\Leftrightarrow x^3+1-x^3+3x=15\\ \Leftrightarrow3x=14\\ \Leftrightarrow x=\dfrac{14}{3}\)
\(d,\Leftrightarrow x^3-5x+2x^2-10+5x-2x^2-17=0\\ \Leftrightarrow x^3-27=0\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x=3\)
a)x.(5-2x)-2x.(1-x)=15
x [ 5 - 2x -2.(1-x) ] = 15
x ( 5 - 2x -2 + 2x ) =15
x . 3 =15
x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
9x2+12x+4+1-9x2=2
12x + 5 = 2
12x = -3
x = -1/4
\(a,\Rightarrow2x^2-18x-2x^2=0\\ \Rightarrow-18x=0\Rightarrow x=0\\ b,\Rightarrow2x^2-5x-12+x^2-7x+10=3x^2-17x+20\\ \Rightarrow5x=22\Rightarrow x=\dfrac{22}{5}\)
a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)
\(\Leftrightarrow x=25\)
b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)
c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x=1\)
hay \(x=-\dfrac{1}{9}\)
a. x^3 -2x^2 +4x+2x^2 -4x+8 -x^3 -2x=15
8-2x=15
-2x=7
x=-7/2
a)\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
=>\(x^3+8-x^3+2x=15\)
=>\(8+2x=15\)
=>2x=7
=>\(x=\frac{7}{2}\)
b) làm tương tự, áp dụng các hằng đẳng thức vào