K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2018

Chọn C.

Đặt AB = 2x suy ra AE = EB = x.

Vì góc BDE nhọn nên  suy ra

Theo định lí Pitago ta có:

DE2 = AD2 + AE2 = 1 + x2 nên 

BD2 = DC2 + BC2 = 4x2 + 1 nên 

Áp dụng định lí côsin trong tam giác BDE ta có

Suy ra: 4x4 - 4x2 + 1 = 0 nên  (do x > 0)

Vậy độ dài cạnh AB là   .

24 tháng 10 2023

loading...  

25 tháng 10 2023

loading...  loading...  

28 tháng 4 2021

Lời giải chi tiết

a) Gọi OO là trung điểm của BC⇒OB=OC=BC2.BC⇒OB=OC=BC2.   (1)

Vì DODO là đường trung tuyến của tam giác vuông DBCDBC.

Theo tính chất trung tuyến ứng với cạnh huyền, ta có:  

             OD=12BCOD=12BC                                          (2)

Từ (1) và (2) suy ra OD=OB=OC=12BCOD=OB=OC=12BC

Do đó ba điểm B, D, CB, D, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Lập luận tương tự, tam giác BEC vuông tại E có EO là đường trung tuyến ứng với cạnh huyền BC nên OE=OB=OC=12BCOE=OB=OC=12BC

Suy ra ba điểm B, E, CB, E, C cùng thuộc đường tròn tâm OO bán kính OBOB.

Do đó 4 điểm B, C, D, EB, C, D, E cùng thuộc đường tròn (O)(O) đường kính BCBC. 

b) Xét đường (O;BC2)(O;BC2), với BCBC là đường kính.

Ta có DEDE là một dây cung không đi qua tâm nên  ta có BC>DEBC>DE ( vì trong một đường tròn, dây lớn nhất là đường kính).

16 tháng 8 2021

a) Gọi \mathrm{M} là trung điểm của \mathrm{BC}.

Ta có EM=\dfrac{1}{2} BC, DM=\dfrac{1}{2} BC.

Suy ra ME=MB=MC=MD

do đó B, E, D, C cùng thuộc đường tròn đường kính BC.

b) Trong đường tròn nói trên, DE là dây, BC là đường kính nên DE<BC

13 tháng 5 2021

a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)

Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)

Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)

2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)

15 tháng 5 2021

Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)

                  Góc CMD =90 độ(góc nt chắn nửa đt)

             Mà góc CHE và góc CMD ở vị trí đối nhau

 ⇒ Tứ giác CMEH nội tiếp

Câu b:

   Xét \(\Delta NACva\Delta NMB\) có :

     Góc N chung

     Góc NCA = góc NBM (cùng chắn cung MA)

⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)

  ⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB

Câu c:

Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK

                                                            Mà IK\(\perp\)AK

                                           ⇒IK song song với MP (từ vuông góc đến song song