K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

Tui làm đại nghen không biết đúng không nữa.

Dùng hằng đẳng thức:

 \(a^3+1=\left(a+1\right)\left(a^2-a+1\right)=\left(a+1\right)\left[\left(a-0,5\right)^2+0,75\right]\)

\(a^3-1=\left(a-1\right)\left(a^2+a+1\right)=\left(a-1\right)\left[\left(a+0,5\right)^2+0,75\right]\)

Ta có: \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)

            \(=\frac{\left(2^3+1\right)\left(3^3+1\right)\left(4^3+1\right)...\left(10^3+1\right)}{\left(2^3-1\right)\left(3^3-1\right)\left(4^3-1\right)...\left(10^3-1\right)}\)

Đặt \(P=\left(2^3+1\right)\left(3^3+1\right)\left(4^3+1\right)...\left(10^3+1\right)\)

<=> P = (2+1)[(2-0,5)2 + 0,75] . (3+1)[(3-0,5)2 + 0,75] . (4+1)[(4-0,5)2 + 0,75] ... (10+1)[(10-0,5)2 + 0,75]

          = 3.(1,52 + 0,75) . 4(2,52 + 0,75) . 5(3,52 + 0,75)... 11(9,52 + 0,75)

Đặt \(Q=\left(2^3-1\right)\left(3^3-1\right)\left(4^3-1\right)...\left(10^3-1\right)\)

<=> Q = (2-1)[(2+0,5)2 + 0,75] . (3-1)[(3+0,5)2 + 0,75] . (4-1)[(4+0,5)2 + 0,75] ... (10-1)[(10+0,5)2 + 0,75]

           = (2,52 + 0,75) . 2(3,52 + 0,75) . 3(4,52 + 0,75)... 9(10,52 + 0,75)

=> \(A=\frac{P}{Q}\)\(=\frac{\text{3.(1,5^2 + 0,75) . 4(2,5^2 + 0,75) . 5(3,5^2 + 0,75)... 11(9,5^2 + 0,75)}}{\left(2,5^2+0,75\right).2\left(3,5^2+0,75\right).3\left(4,5^2+0,75\right)...9\left(10,5^2+0,75\right)}\)

              \(=\frac{3.4.5...11}{1.2.3...9}.\frac{\left(1,5^2+0,75\right)\left(2,5^2+0,75\right)\left(3,5^2+0,75\right)...\left(9,5^2+0,75\right)}{\left(2,5^2+0,75\right)\left(3,5^2+0,75\right)\left(4,5^2+0,75\right)...\left(10,5^2+0,75\right)}\)

                \(=\frac{10.11.\left(1,5^2+0,75\right)}{2.\left(10,5^2+0,75\right)}=\frac{55}{37}\)

Vậy: \(A=\frac{55}{37}\)

K NHA!!

29 tháng 7 2016

0,75 ở đâu ra z chỉ dới

26 tháng 7 2016

Tong quat: a^3+1=(a+1)[a^2-a+1]=(a+1)[(a-0,5)^2+0,75]

                 a^3-1=(a-1)[a^2+a+1]=(a-1)[(a+0,5)^2+0,75]

Tu so cua A=(2+1).[(2-0,5)^2+0,75].(3+1).[(3-0,5)^2+0,75].(4+1).[(4-0,75)^2+0,75]....(10+1).[(10-0,5)^2+0,75]

                 =3.[1,5^2+0,75].4.[2,5^2+0,75].5.[3,5^2+0,75]....11.[9,5^2+0,75]

Mau so cua A= (2-1).[(2+0,5)^2+0,75].(3-1).[(3+0,5)^2+0,75].(4-1).[(4+0,75)^2+0,75]....(10-1).[(10+0,5)^2+0,75]

                 =[2,5^2+0,75].2.[3,5^2+0,75].3.[4,5^2+0,75]....9.[10,5^2+0,75]

Vay A=3.[1,5^2+0,75].4.[2,5^2+0,75].5.[3,5^2+0,75]....11.[9,5^2+0,75]/[2,5^2+0,75].2.[3,5^2+0,75].3.[4,5^2+0,75]....9.[10,5^2+0,75]

         =(3.4.5...11/1.2.3...9).[(1,5^2+0,75)(2,5^2+0,75)(3,5^2+0,75)...(9,5^2+0,75)/(2,5^2+0,75)(3,5^2+0,75)(4,5^2+0,75)...(10,5^2+0,75)]

         =11.10.(1,5^2+0,75)/2.(10,5^2+0,75)

         Con bao nhieu ban tu tinh tiep nha 

Tai vi may minh bi lag nen khong danh phan so duoc vi vay minh phai tach mau, tu ra. sorry

26 tháng 7 2016

cảm ơn bạn nhiều

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
9 tháng 5 2020

Đề bài là gì bạn ơi có chỗ ...

9 tháng 5 2020

chưa có đề bạn ơi! Y_Y

Hok tốt ^_^

21 tháng 7 2019

a) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)

=> \(\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)

=> \(\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}+\frac{x+1}{12}=0\)

=> \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)

=>  x + 1 = 0

=> x = -1

21 tháng 7 2019

b) \(\frac{x-1}{2020}+\frac{x-2}{2019}-\frac{x-3}{2018}=\frac{x-4}{2017}\)

=> \(\left(\frac{x-1}{2020}-1\right)+\left(\frac{x-2}{2019}-1\right)-\left(\frac{x-3}{2018}-1\right)=\left(\frac{x-4}{2017}-1\right)\)

=> \(\frac{x-2021}{2020}+\frac{x-2021}{2019}-\frac{x-2021}{2018}=\frac{x-2021}{2017}\)

=> \(\left(x-2021\right)\left(\frac{1}{2020}+\frac{1}{2019}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

=> x - 2021 = 0

=> x = 2021

c) \(\left(\frac{3}{4}x+3\right)-\left(\frac{2}{3}x-4\right)-\left(\frac{1}{6}x+1\right)=\left(\frac{1}{3}x+4\right)-\left(\frac{1}{3}x-3\right)\)

=> \(\frac{3}{4}x+3-\frac{2}{3}x+4-\frac{1}{6}x-1=\frac{1}{3}x+4-\frac{1}{3}x+3\)

=> \(-\frac{1}{12}x+6=7\)

=> \(-\frac{1}{12}x=1\)

=> x = -12