chứng minh rằng đa thức f(x)=x³-1 có duy nhất một nghiệm là x=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có P(x) = x3 + 2x2 - 3x + 1
= 3x + 4x - 3x +1
= 4x + 1
Cho 4x + 1 =0
4x = -1
x = -1/4 = -0,25
Vậy P(x )= x3 + 2x2 - 3x + 1 có duy nhất một nghiệm nguyên là -0,25
Vì x f(x+1) = (x+3)f(x) với mọi x nên:
* khi x=0 thì 0.f(0-1) = (0+3).f(0) tương đương f(0)=0. vậy 0 là nghiệm của đa thức f(x)
* khi x=-3 suy ra -3.f(-3+2) = (-3 +3). f(-3)
-3f(-2) = 0f(-3) tuong duong f(-2) = 0. vậy -2 cũng là một nghiệm của f(x)
do đó đa thức f(x) có ít nhất 2 nghiệm là 0 và 2
từ pt x.f(x+1) = f( x+ 2) .f(x)
xét x= 0
pt có dạng 0= f(2).f(0)
vậy hoặc f(2) = 0 hoặc f(0) = 0
hay hoặc x= 2 hoặc x= 0 là nghiệm của pt f(x) = 0
KL pt f(x) = 0 có ít nhất 2 nghiệm
f(x)=0
=>x^3-1=0
=>x^3=1
=>x=1