Cho tam giác ABC, đường phân giác AD. Chứng minh AD2 = AB.AC - DB.DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) HS tự chứng minh.
b) HS tự chứng minh.
c) Từ a, suy ra AB.AC = AD.AI (1)
Từ b, suy ra BD.CD = AD.ID (2)
Từ (1) và (2), ta chứng minh được AD2 = AB.AC- DB.DC
Trên cùng một nửa mặt phẳng bờ \(BC\)không chứa \(A\)lấy tia \(Cx\)sao cho \(\widehat{BAD}=\widehat{BCx}\).
Kéo dài \(AD\)cắt \(Cx\)tại \(E\).
Xét \(\Delta DAB\)và \(\Delta DCE\)có:
\(\widehat{ADB}=\widehat{CDE}\)(vì đối đỉnh).
\(\widehat{BAD}=\widehat{BCE}\)(hình vẽ trên).
\(\Rightarrow\Delta DAB~\Delta DCE\left(g.g\right)\).
\(\Rightarrow\widehat{ABD}=\widehat{CED}\)(2 góc tương ứng).
\(\Rightarrow\widehat{ABD}=\widehat{CEA}\)
Và \(\frac{AD}{CD}=\frac{DB}{DE}\)(tỉ số đồng dạng).
\(\Rightarrow AD.DE=BD.CD\)\(\left(1\right)\).
Xét \(\Delta BAD\)và \(\Delta EAC\)có:
\(\widehat{BAD}=\widehat{EAC}\)(giả thiết).
\(\widehat{ABD}=\widehat{AEC}\)(chứng minh trên).
\(\Rightarrow\Delta BAD~\Delta EAC\left(g.g\right)\).
\(\Rightarrow\frac{AD}{AC}=\frac{AB}{AE}\)(tỉ số đồng dạng).
\(\Rightarrow AD.AE=AB.AC\)\(\left(2\right)\).
Từ \(\left(1\right)\)và \(\left(2\right)\).
\(\Rightarrow AD.AE-AD.DE=AB.AC-BD.CD\).
\(\Rightarrow AD\left(AE-DE\right)=AB.AC-BD.CD\).
\(\Rightarrow AD.AD=AB.AC-BD.CD\).
\(\Rightarrow AD^2=AB.AC-BD.CD\)(điều phải chứng minh).
Trên tia AD lấy điểm E sao cho ^BEA = ^BCA.
Khi đó ^BED = ^ACD và ^BDE = ^ADC nên hai tam giác BDE và ADC đồng dạng
suy ra BD/AD = DE/DC
suy ra AD.DE = DB.DC (1).
Gọi F là điểm đối xứng với C qua đường thẳng AD
vì AD là phân giác ^BAC nên F thuộc AB,
từ tính chất đối xứng suy ra ^DFA = ^DCA và AF = AC,
vì ^DCA = ^BCA = ^BEA nên ^DFA = ^BEA,
cùng với ^A chung nên hai tam giác DFA và BEA đồng dạng,
suy ra AD/AB = AF/AE = AC/AE, suy ra AD.AE = AB.AC (2).
Từ (2) và (1) theo vế thì có AD.(AE - DE) = AB.AC - DB.DC, suy ra AD^2 = AB.AC - DB.DC.
b) Xét ΔADB và ΔCDE có
\(\widehat{ADB}=\widehat{CDE}\)(hai góc đối đỉnh)
\(\widehat{BAD}=\widehat{ECD}\)(gt)
Do đó: ΔADB\(\sim\)ΔCDE(g-g)
a: Xét ΔABE và ΔADC có
góc ABE=góc ADC
góc BAE=góc DAC
=>ΔABE đồng dạng với ΔADC
b: Xét ΔDAC và ΔDBE có
góc DAC=góc DBE
góc ADC=góc BDE
=>ΔDAC đồng dạng với ΔDBE
=>DA/DB=DC/DE
=>DA*DE=DB*DC
a) DB?, DC?
Ta có:\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất đường phân giác)
⇒\(\dfrac{DB}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
Mặt khác \(\dfrac{DB}{3}=\dfrac{DC}{5}\)
\(\dfrac{DB}{3}=\dfrac{DC}{5}=\dfrac{DB+DC}{3+5}=\dfrac{BC}{8}=\dfrac{12}{8}=\dfrac{3}{2}\)
\(\dfrac{DB}{3}=\dfrac{3}{2}\\ \Rightarrow DB=\dfrac{3\times3}{2}=\dfrac{9}{2}=4.5\left(cm\right)\)
Và \(\dfrac{DC}{5}=\dfrac{3}{2}\\ \Rightarrow DC=\dfrac{3\times5}{2}=\dfrac{15}{2}=7,5\left(cm\right)\)
Vậy DB=4,5(cm), DC= 7,5 cm
Bạn tự vẽ hình nhé :))
Từ B kẻ tia Bx cắt AD tại E sao cho góc ABE = góc ADC.
\(\Delta AEB\)và \(\Delta ACD\)có: góc ABE = góc ADC (cách dựng) và góc BAE = góc DAC (gt)
\(\Rightarrow\)\(\Delta AEB\)đồng dạng \(\Delta ACD\)\(\Rightarrow\)\(\frac{AB}{AD}=\frac{AE}{AC}\)\(\Rightarrow\)\(AB.AC=AE.AD\)(1)
\(\Rightarrow\)góc BED = góc ACD.
\(\Delta ACD\)và \(\Delta BED\)có: góc ACD = góc BED (cmt) và góc ADC = góc BDE (đối đỉnh)
\(\Rightarrow\)\(\Delta ACD\)đồng dạng \(\Delta BED\)\(\Rightarrow\)\(\frac{DB}{AD}=\frac{DE}{DC}\)\(\Rightarrow\)\(DB.DC=DE.AD\)(2)
Lấy (1) - (2) vế theo vế ta được \(AB.AC-DB.DC=AD\left(AE-DE\right)\)\(\Leftrightarrow\)\(AD^2=AB.AC-DB.DC\)(đpcm).
Cảm ơn bạn nhiều