Chứng minh giúp mình mấy câu bất đẳng thức này nha
a) \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\left(a,b>0\right)\)
b) \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\left(a,b>0\right)\)
c) \(y\left(\frac{1}{x}+\frac{1}{x}\right)+\frac{1}{y}\left(x+z\right)\le\left(\frac{1}{x}+\frac{1}{z}\right)\left(x+z\right)\left(0< x\le y\le z\right)\)
d) \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a,b,c>0;a+b+c=abc\right)\)
a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)
ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm )
dấu " = " xẩy ra khi x = y > 0
vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0