K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC
Xét ΔAHB vuông tại H và ΔHKA vuông tại K có

góc HAB=góc KHA

=>ΔAHB đồng dạng với ΔHKA

b: ΔAHB đồng dạng với ΔHKA

=>AH/HK=AB/HA

=>AH^2=HK*AB

c: Xét ΔCAM có KI//AM

nên KI/AM=CI/CM

Xét ΔCMB có IH//MB

nên IH/MB=CI/CM

=>KI/AM=IH/MB

mà AM=MB

nên KI=IH

=>I là trung điểm của KH

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)

22 tháng 2 2022

a, Xét tam giác HAC và tam giác ABC 

^C _ chung 

^AHC = ^BAC = 900

Vậy tam giác HAC ~ tam giác ABC (g.g) 

=> HC/AC=AC/BC ( cạnh tương ứng tỉ lệ ) 

=> AC^2 = HC . BC 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=20cm\)

Ta có AC^2 = HC . BC (cmt) 

Thay vào ta được \(16^2=HC.20\Rightarrow HC=\dfrac{16^2}{20}=\dfrac{64}{5}cm\)

22 tháng 2 2022

a. xét tam giác vuông HAC và tam giác vuông ABC, có:

góc C: chung

Vậy tam giác vuông HAC đồng dạng tam giác vuông ABC

b. Áp dụng định lí pitago vào tam giác vuông ABC

\(BC^2=AB^2+AC^2\)

\(\Rightarrow BC=\sqrt{12^2+16^2}=\sqrt{400}=20cm\)

ta có: tam giác HAC đồng dạng tam giác ABC

\(\Rightarrow\dfrac{HC}{AC}=\dfrac{AC}{BC}\)

\(\Leftrightarrow HC.BC=AC^2\)

\(\Leftrightarrow20HC=16^2\)

\(\Leftrightarrow20HC=256\)

\(\Leftrightarrow HC=\dfrac{64}{5}cm\)

 

16 tháng 7 2021

goị giao điểm AH và EF là D

a,do AH là đường cao =>tam giác AHC vuông tại H

\(=>\angle\left(HAF\right)+\angle\left(HCA\right)=90^O\)

có tam giác ABC vuông tại A\(=>\angle\left(B\right)+\angle\left(HCA\right)=90^o\)

\(=>\angle\left(HAF\right)=\angle\left(B\right)\)

dễ cminh đc tứ giác AEHF là hình chữ nhật(do 3 góc =90 độ bn tự lm)

theo t/c hình chữ nhật thì 2 đường chéo = nhau và cắt nhau tại trung điểm mỗi đường

\(=>AD=DF\)=>tam giác ADF cân tại D\(=>\angle\left(EFA\right)=\angle\left(HAF\right)\)

\(=>\angle\left(HFA\right)=\angle\left(B\right)\)

xét tam giác AFE và tam giác ABC có

\(\angle\left(EFA\right)=\angle\left(B\right)\)

\(\angle\left(A\right)chung\)

=> 2 tam giác đồng dạng trường hợp (c.c) tự kết luận 

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: ΔABC đồng dạng với ΔHAC

=>CA/CH=CB/CA

=>CA^2=CH*CB