Cho \(x,y>0\)và \(x+y\le2\)Tìm GTNN của \(C=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:
\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)
\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)
Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)
=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)
Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)
Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
\(A=x+\frac{1}{x}+y+\frac{1}{y}+\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{x}{x}}+2\sqrt{\frac{y}{y}}+\frac{4}{x+y}\ge2+2+\frac{4}{2}=6\)
\(A_{min}=6\) khi \(x=y=1\)
\(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)
Do đó:
\(A=2\left(x+\dfrac{1}{x}\right)+2\left(y+\dfrac{1}{y}\right)-\left(x+y\right)\ge2.2\sqrt{x.\dfrac{1}{x}}+2.2\sqrt{y.\dfrac{1}{y}}-2=6\)
\(A_{min}=6\) khi \(x=y=1\)
Ta có
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=8\)
Ta lại có
\(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{1}{4}\)
Từ đó ta có
\(P\ge8+\frac{33}{4}=\frac{65}{4}\)
Vậy GTNN là \(\frac{65}{4}\)đạt được khi x = y = 2
\(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}+4+4\)
\(=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(\frac{3}{x^2}+3x+3x\right)+\left(\frac{3}{y^2}+3y+3y\right)-6\left(x+y\right)+8\)
\(\ge2+2+9+9-6.2+8=18\)
Ta có : \(S=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
\(=\left(\frac{20}{x^2+y^2}+\frac{10}{xy}\right)+\frac{1}{xy}\)
\(=\left(\frac{20}{x^2+y^2}+\frac{20}{2xy}\right)+\frac{1}{xy}=20.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)
Áp dụng BĐT Svacxo ta có :
\(20\cdot\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge20\cdot\frac{4}{x^2+y^2+2xy}=20\cdot\frac{4}{\left(x+y\right)^2}\ge20\cdot\frac{4}{2^2}=20\)
Mặt khác có : \(0< xy\le\frac{\left(x+y\right)^2}{4}\le\frac{2^2}{4}=1\)
\(\Rightarrow\frac{1}{xy}\ge1\)
Do đó : \(S\ge20+1=21\)
Dấu "=" xảy ra khi \(x=y=1\)
\(C=x^2+y^2+\dfrac{4}{x^2}+\dfrac{4}{y^2}\)
\(=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng BĐT Cô si cho 2 số dương, ta có:
\(C\ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(=4+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
Áp dụng BĐT Svácxơ, ta có:
\(C\ge4+3.\dfrac{4}{x^2+y^2}=4+\dfrac{12}{x^2+y^2}\)
\(C\ge4+\dfrac{12}{2}=4+6=10\)\(\left(x^2+y^2\le2\right)\)
Dấu "=" \(\Leftrightarrow x=y=1\)
\(C=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)
\(C\ge2\sqrt{\dfrac{x^2}{x^2}}+2\sqrt{\dfrac{y^2}{y^2}}+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge4+\dfrac{3}{2}\left(\dfrac{4}{x+y}\right)^2\ge4+\dfrac{3}{2}.\left(\dfrac{4}{2}\right)^2=10\)
\(C_{min}=10\) khi \(x=y=1\)