K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

\(C=x^2+y^2+\dfrac{4}{x^2}+\dfrac{4}{y^2}\)

\(=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

Áp dụng BĐT Cô si cho 2 số dương, ta có:

\(C\ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(=4+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

Áp dụng BĐT Svácxơ, ta có:

\(C\ge4+3.\dfrac{4}{x^2+y^2}=4+\dfrac{12}{x^2+y^2}\) 

\(C\ge4+\dfrac{12}{2}=4+6=10\)\(\left(x^2+y^2\le2\right)\)

Dấu "=" \(\Leftrightarrow x=y=1\)

NV
22 tháng 3 2022

\(C=\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)+3\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(C\ge2\sqrt{\dfrac{x^2}{x^2}}+2\sqrt{\dfrac{y^2}{y^2}}+\dfrac{3}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge4+\dfrac{3}{2}\left(\dfrac{4}{x+y}\right)^2\ge4+\dfrac{3}{2}.\left(\dfrac{4}{2}\right)^2=10\)

\(C_{min}=10\) khi \(x=y=1\)

2 tháng 6 2015

Đặt \(t=\frac{x}{y}+\frac{y}{x}\). Vì x; y > 0 => \(\frac{x}{y}>0;\frac{y}{x}>0\). Áp dung BDT Cô - si có:

\(t=\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)

Có: \(\frac{x^2}{y^2}+\frac{y^2}{x^2}=\left(\frac{x}{y}+\frac{y}{x}\right)^2-2.\frac{x}{y}.\frac{y}{x}=t^2-2\)

\(\frac{x^4}{y^4}+\frac{y^4}{x^4}=\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}\right)^2-2.\frac{x^2}{y^2}.\frac{y^2}{x^2}=\left(t^2-2\right)^2-2=t^4-4t^2+4-2=t^4-4t^2+2\)

Vậy \(A=t^4-4t^2+2-\left(t^2-2\right)+t=t^4-5t^2+t+4\)

=> \(A=\left(t^4-8t^2+16\right)+3t^2+t-12=\left(t^2-4\right)^2+3t^2+t-12=\left(t^2-4\right)^2+3\left(t^2-4\right)+t\ge2\)với mọi \(t\ge2\)

Vì \(t\ge2\) => \(t^2\ge4\Rightarrow t^2-4\ge0\)

Vậy Min A = 2 khi t = 2 <=> \(\frac{x}{y}+\frac{y}{x}=2\) <=> x = y = 1

 

30 tháng 5 2020

\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)

\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)

\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)

\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)

Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)

5 tháng 8 2016

1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)

 \(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)

max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)

5 tháng 8 2016

\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!

NV
15 tháng 9 2020

\(A=x+\frac{1}{x}+y+\frac{1}{y}+\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{x}{x}}+2\sqrt{\frac{y}{y}}+\frac{4}{x+y}\ge2+2+\frac{4}{2}=6\)

\(A_{min}=6\) khi \(x=y=1\)

NV
22 tháng 3 2022

\(x+y\le2\Rightarrow-\left(x+y\right)\ge-2\)

Do đó:

\(A=2\left(x+\dfrac{1}{x}\right)+2\left(y+\dfrac{1}{y}\right)-\left(x+y\right)\ge2.2\sqrt{x.\dfrac{1}{x}}+2.2\sqrt{y.\dfrac{1}{y}}-2=6\)

\(A_{min}=6\) khi \(x=y=1\)

25 tháng 10 2016

Ta có

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=8\)

Ta lại có

\(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{1}{4}\)

Từ đó ta có

\(P\ge8+\frac{33}{4}=\frac{65}{4}\)

Vậy GTNN là \(\frac{65}{4}\)đạt được khi x = y = 2

25 tháng 10 2016

khonh

tk nheavt678967_60by60.jpg

xin

23 tháng 3 2022

Đề chép sai rồi kìa.

23 tháng 3 2022

\(\left(x+\frac{2}{x}\right)^2+\left(y+\frac{2}{y}\right)^2=x^2+y^2+\frac{4}{x^2}+\frac{4}{y^2}+4+4\)

\(=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(\frac{3}{x^2}+3x+3x\right)+\left(\frac{3}{y^2}+3y+3y\right)-6\left(x+y\right)+8\)

\(\ge2+2+9+9-6.2+8=18\)

23 tháng 9 2020

Ta có : \(S=\frac{20}{x^2+y^2}+\frac{11}{xy}\)

\(=\left(\frac{20}{x^2+y^2}+\frac{10}{xy}\right)+\frac{1}{xy}\)

\(=\left(\frac{20}{x^2+y^2}+\frac{20}{2xy}\right)+\frac{1}{xy}=20.\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{xy}\)

Áp dụng BĐT Svacxo ta có : 

\(20\cdot\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)\ge20\cdot\frac{4}{x^2+y^2+2xy}=20\cdot\frac{4}{\left(x+y\right)^2}\ge20\cdot\frac{4}{2^2}=20\)

Mặt khác có : \(0< xy\le\frac{\left(x+y\right)^2}{4}\le\frac{2^2}{4}=1\)

\(\Rightarrow\frac{1}{xy}\ge1\)

Do đó : \(S\ge20+1=21\)

Dấu "=" xảy ra khi \(x=y=1\)

23 tháng 9 2020

Ez right??