Chứng minh trong tập N có ba số lẻ liên tiếp là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dĩ nhiên rồi vì số lẻ là tập con của N
mà N là tập con của Z( số nguyên )
=> điều phải chứng minh
mà đề bạn viết sai đề rồi phải là :Chứng minh trong tập N có ba số lẻ liên tiếp là số nguyên tố
thì khi ấy cặp ba số là :(1,3,5)
Vì 3,5 ,7đều chia hết cho chính nó và 1 nên chúng là số nguyên tố!
Ta đã biết ba số tự nhiên lẻ liên tiếp là: 3,5,7. Ta chứng minh bộ ba này là duy nhất.
Thật vậy, giả sử có ba số nguyên tố lẻ liên tiếp nhau là: a;a+2;a+4.
Vì a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3. Vậy a có dạng: a = 3k+1; 3k+2 (k ∈ N)
+ Nếu a = 3k+1 thì a+2 = 3k+3 > 3 và chia hết cho 3 => Hợp số.
+ Nếu a = 3k+2 thì a + 4 = 3k+6 > 3 và chia hết cho 3 => Hợp số.
=>Điều giả sử sai. Vậy có duy nhất bộ ba số tự nhiên lẻ liên tiếp là số nguyên tố
Gọi 2k+1,2k+3,2k+52k+1,2k+3,2k+5 là 3 số tự nhiên lẻ liên tiếp
+) Nếu kk chia hết cho 3 →2k+3→2k+3 chia hết cho 3
+) Nếu kk chia 3 dư 1 →2k+1→2k+1 chia hết cho 3
+) Nếu kk chia 3 dư 2 →2k+5→2k+5 chia hết cho 3
→→ 3 tự nhiên lẻ tiên tiếp luôn tồn tại 1 số chia hết cho 3
→→ Nếu k=1→3,5,7k=1→3,5,7 là số nguyên tố
+)Nếu k>1→2k+1,2k+3,2k+5k>1→2k+1,2k+3,2k+5 là 3 số tự nhiên lớn hơn 3 do trong 3 số luôn tồn tại 1 số chia hết cho 3 suy ra số đó là hợp số →k>1→k>1 không có bộ 3 số nào thỏa mãn đề
Gọi 3 số tự nhiên lẻ liên tiếp là : p ; p+2 ; p+4
Với p=2 => p+2=4
Vì 4 là hợp số nên p là số nguyên tố khác 2
Với p=3 => p+2=5 => p+4=7
Vì 3, 5 và 7 là các số nguyên tố
=> 3, 5 và 7 là bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
p lớn hơn hoặc bằng 3 => p bằng 3k+1 hoặc 3k+2 (k là số tự nhiên khác 0)
Với p=3k+1 => p+2=3k+3 chia hết cho 3 (là hợp số nên loại)
Với p=3k+2 => p+4=3k+6 chia hết cho 3 (là hợp số nên loại)
=> Chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố
Vậy chỉ có duy nhất bộ 3 số tự nhiên lẻ liên tiếp đều là số nguyên tố.
Chúc bạn học tốt!
#Huyền#
Gọi ba số lẻ đó lần lượt là: a, a+1, a+2 (a \(\in\)N)
Tổng ba số đó là: a+(a+1)+(a+2)
= a+a+1+a+2
= 3a +3
Vì \(3⋮3\Rightarrow3a⋮3\)
Vậy trong ba số le liên tiếp có 1 số chia hết cho 3
-Gọi ba số tự nhiên liên tiếp lần lượt là : n ; n + 1 ; n + 2 ( n N )
-Nếu n chia hết cho 3 thì bài toán luôn đúng ( 3k chia hết cho 3 )
-Nếu n : 3 dư 1 thì n = 3k + 1 ( k N )
=> n + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3
-Nếu n : 3 dư 2 thì n = 3k + 2 ( k N )
=> n + 1 = 3k + 1 + 2 = 3k + 3 chia hết cho 3
Vậy trong 3 số tụ nhiên liên tiếp luôn có một số chia hết cho 3
Vì tập hợp N chỉ bao gồm các số tự nhiên nên sẽ có ba số lẻ liên tiếp là số nguyên.
tất nhiên là vậy 3,5,7 thuộc N
và cũng thuộc Z
đúng 100%
làm vậy sẽ đc 10 điểm