K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2016

\(S=5+5^2+5^3+..+5^{2008}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)

\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)

\(S=5.3906+...+5^{2003}.3906\)

\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126

=> S chia hết cho 3906 

Ủng hộ mk nha !!! ^_^

30 tháng 7 2016

\(S=5+5^2+5^3+..+5^{2008}\)

\(S=\left(5+5^2+5^3+5^4+5^5+5^6\right)+...\left(5^{2003}+5^{2004}+5^{2005}+5^{2006}+5^{2007}+5^{2008}\right)\)

\(S=5.\left(1+5+25+125+625+3125\right)+...+5^{2003}.\left(1+5+25+125+625+3125\right)\)

\(S=5.3906+...+5^{2003}.3906\)

\(S=3906.\left(5+...+5^{2003}\right)\)chia hết cho 126

=> S chia hết cho 3906 

26 tháng 7 2016

/vip/minan_3712

/vip/ngoclinh

/vip/muonduochoc

/vip/khanhhay2002@gmail.com

mấy pạn ơi giúp mk với

26 tháng 7 2016

gì vậy bn???????????????????????????/hiuhiu

25 tháng 7 2016

Câu a bạn phải cm rõ ra mình ms k cho bn dc chứ

25 tháng 7 2016

a) \(\text{Chia hết cho 126}\)

b) \(\text{ Do S là tổng các lũy thừa có cơ số là 5. Cho nên mỗi lũy thừa đều tận cùng là 5. Mà S có tất cả 96 số như vậy. Nên chữ số tận cùng của S là 0. }\)

16 tháng 8 2017

a, \(\)Ta có : \(S=5+5^2+5^3+...+5^{2008}\)

\(S=\left(5+5^4\right)+\left(5^2.5^5\right)+...+\left(5^{2005}+2^{2008}\right)\)

\(S=5.\left(1+125\right)+5^2.\left(1+125\right)+...+5^{2005}.\left(1+125\right)\)

\(S=5.126+5^2.126+...+5^{2005}.126\) \(⋮\) \(126\)

b, Vì S là tổng của các lũy thừa có cơ số là là 5 nên mỗi lũy thừa có số tận cùng là 5

=> S có tất cả 2008 số hạng

=> Chữ số tận cùng của S là 0 ( zero)

16 tháng 8 2017

a, Ta Có :S=5+ 52+ 53+....+ 52008

S=(5+ 54)+ (52+ 55)+.........+ (52005+ 52008)

S= 5(1+ 125)+ 52(1+125)+.......+ 52005( 1+125)

S=126( 5+ 52 + 53+.....+ 52005) chia hết co 126

b, Do S là tổng các lũy thừa có cơ số là 5 nên mỗi lũy thừa đều có tận cùng là 5

Do S có tất cả 2008 số hạng => Chữ số tận cùng của S là 0

21 tháng 3 2020

\(S=5+5^2+5^3+...+5^{2008}\)

a) Ta có: \(126=5^0+5^3\)

\(5+5^4=5\left(5^0+5^3\right)\text{ }⋮\text{ }126,\text{ }5^2+5^5=5^2\left(5^0+5^3\right)\text{ }⋮\text{ }126,...\)

Áp dụng lần lượt như thế, ta có:

\(\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+\left(5^7+5^{10}\right)+\left(5^8+5^{11}\right)+\left(5^9+5^{12}\right)+...+\left(5^{2005}+5^{2008}\right)\text{ }⋮\text{ }126\)

Còn thiếu \(5^{2006}+5^{2007}\), ta có: \(5^{2006}+5^{2007}=5^{2006}\left(5^0+5^1\right)=5^{2006}\cdot6=2\cdot3\cdot5^{2006}\)

Trong khi đó: \(126=2\cdot3^2\cdot7\)

Ta dễ thấy \(5^{2006}+5^{2007}\) không chia hết cho \(3\cdot7=21\), nên \(5^{2006}+5^{2007}\) không chia hết cho 126.

Từ đó suy ra S không chia hết cho 126.

b) Tất cả các số hạng đều có chữ số tận cùng là 5.

Biểu thức S có \(\left(2008-1\right)+1=2008\) số hạng cộng lại với nhau.

=> S có chữ số tận cùng là 0 (vì số lượng các số hạng cộng lại với nhau là số chẵn)

25 tháng 11 2016

số số hạng trong dãu số S là :(2009-1)/2+1=1005

vì số số hạng trong dãy số là lẻ 

----> tổng là lẻ-------> S không chia hết cho 2

25 tháng 11 2016

ko vì có 1005 số