21 x 22 x 23 x ... x 2x = 1024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa: \(A=1+2^1+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\\ \Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\\ ....\\ \Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
\(A=1+2^1+2^1+2^2+...+2^{2021}\\ \Rightarrow A=1+2+2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2+2^2+...+2^{2021}\\ \Rightarrow A=1+2^2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2^2+...+2^{2021}\\ \Rightarrow A=1+2^3+...+2^{2021}\)
....
\(\Rightarrow A=1+2^{2022}\)
\(2^x=1+A\\ \Rightarrow2^x=1+1+2^{2022}\\ \Rightarrow2^x=2+2^{2022}\)
không phù hợp với lớp 6
a) 22 + (2x -13) = 83 => 2x -13 = 61 => x = 37.
b) 51 - (-12 + 3x) = 27 => 63 - 3x = 27 => x = 12.
c) - (2x + 2) + 21 = - 23 => 2x + 2 = 44 => x = 21.
d) 25 - (25 - x) = 0 => 25 - 25 + x = 0 => x = 0.
Bài 1
S₂ = 21 + 23 + 25 + ... + 1001
Số số hạng của S₂:
(1001 - 21) : 2 + 1 = 491
⇒ S₂ = (1001 + 21) . 491 : 2 = 250901
--------
S₄ = 15 + 25 + 35 + ... + 115
Số số hạng của S₄:
(115 - 15) : 10 + 1 = 11
⇒ S₄ = (115 + 15) . 11 : 2 = 715
Bài 2
a) 2x - 138 = 2³.3²
2x - 138 = 8.9
2x - 138 = 72
2x = 72 + 138
2x = 210
x = 210 : 2
x = 105
b) 5.(x + 35) = 515
x + 35 = 515 : 5
x + 35 = 103
x = 103 - 35
x = 78
c) 814 - (x - 305) = 712
x - 305 = 814 - 712
x - 305 = 102
x = 102 + 305
x = 407
d) 20 - [7.(x - 3) + 4] = 2
7(x - 3) + 4 = 20 - 2
7(x - 3) + 4 = 18
7(x - 3) = 18 - 4
7(x - 3) = 14
x - 3 = 14 : 7
x - 3 = 2
x = 2 + 3
x = 5
e) 9ˣ⁻¹ = 9
x - 1 = 1
x = 1 + 1
x = 2
a) \(A=2+2^2+2^3+...+2^{2022}\)
\(2A=2.\left(2+2^2+2^3+...+2^{2022}\right)\)
\(2.A=2^2+2^3+2^4+...+2^{2023}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2023}\right)-\left(2+2^2+2^3+...+2^{2022}\right)\)
\(A=2^{2023}-2\)
b) A + 2 = 2x
Hay \(\left(2^{2023}-2\right)+2=2^x\)
\(2^{2023}-2+2=2^x\)
\(2^{2023}=2^x\)
\(\Rightarrow x=2023\)
a, A = 21 + 22 + 23 + ...+ 22022
2A = 22 + 23 +...+ 22022 + 22023
2A - A = 22023 - 21
A = 22023 - 2
b, A + 2 = 2\(^x\) ⇒ 22023 - 2 + 2 = 2\(x\)
22023 = 2\(^x\)
2023 = \(x\)
Bài làm
x = \(\frac{20}{21}+\frac{21}{22}+\frac{22}{23}+\frac{23}{20}\)
x = 1 + 1 + 1 + 1 + \((\)\(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)
Ta thấy 0 < \(\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23}\)
\(\Rightarrow\) 1 + 1 + 1 + 1 + \((\frac{3}{20}-\frac{1}{21}-\frac{1}{22}-\frac{1}{23})\)> 4
\(\Rightarrow\)x > 4
a) x. (22+23)=90
x.45=90
x=90:45
x=2
b)2x+293=309
2x=309-293
2x=16
x=16:2
x=8
21 + 22 + 23 + 24 + 25 + ... + x = 4840
=> [ (x-21) :1+1 ] . ( x+21):2= 4840
=> ( x-20) . (x+21)= 9680
=> x2 +x - 420 = 9680
<=> x2 +n - 100100 = 0
=> x(x−100)+101(x−100)=0
⇔(x +101)(x −100)=0
<=> x=−101(loại)
x =100 ( chọn)
=> x=100
Vậy x = 100
Ta có: $21 + 22 + 23 + 24 + 25 + … + x = \sum_{i=21}^{x} i$
Sử dụng công thức tính tổng của dãy số liên tiếp, ta có:
$\sum_{i=21}^{x} i = \dfrac{(21 + x)(x - 21 + 1)}{2} = \dfrac{(x + 21)(x - 20)}{2}$
Vậy $\dfrac{(x + 21)(x - 20)}{2} = 4840$
$\Leftrightarrow (x + 21)(x - 20) = 9680$
$\Leftrightarrow x^2 + x - 420 = 0$
Áp dụng công thức tính nghiệm của phương trình bậc hai, ta có:
$x = \dfrac{-1 \pm \sqrt{1 + 4 \times 420}}{2} = \dfrac{-1 \pm 41}{2}$
Vì $x > 21$ nên ta chọn $x = \dfrac{-1 + 41}{2} = 20$
Vậy kết quả là $x = 42$.
21 x 22 x 23 x ... x 2x = 1024
=> 21+2+3+...+x = 210
=> 1 + 2 + 3 + ... + x = 10
=> (1 + x).x:2 = 10
=> (1 + x).x = 10.2
=> (1 + x).x = 20
=> (1 + x).x = 5.4
=> x = 4
Vậy x = 4
X=4 nha bạn