K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2018

(2x - 1)(x- 2xy + 3y2) = \(2x^3-4x^2y+6xy^2-x^2+2xy-3y^2\)

10 tháng 9 2021

\(a,=12x^3y-4x^2y^2+3xy^3\\ b,=x^3+3x^2-5x+3x^2+9x-15-x^3-4x^2+4x\\ =2x^2+8x-15\)

b: Ta có: \(\left(x+3\right)\left(x^2+3x-5\right)-x\left(x-2\right)^2\)

\(=x^3+3x^2-5x+3x^2+9x-15-x^3+4x^2-4x\)

\(=10x^2-15\)

2 tháng 1 2019

1/2. x 2 y 2  (2x + y)(2x – y)

= 1/2. x 2 y 2 (4 x 2  – 2xy + 2xy –  y 2 )

= 1/2. x 2 y 2  (4 x 2  –  y 2 )

= 1/2. x 2 . y 2 .4 x 2  + 1/2. x 2 y 2 . (- y 2 )

= 2 x 4 y 2 - 1/2. x 2 y 4

8 tháng 9 2021

\(a,\left(x^3+5x^2-2x+1\right)\left(x-7\right)\\ =x^4-7x^3+5x^3-35x^2-2x^2+14x+x-7\\ =x^4-2x^3-37x^2+15x-7\\ b,\left(2x^2-3xy+y^2\right)\left(x+y\right)\\ =2x^3+2x^2y-3x^2y-3xy^2+xy^2+y^3\\ =2x^3-x^2y-2xy^2+y^3\\ c,\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\\ =x^3-5x^2+x-2x^2+10x--x^3-11x\\ =x^3-7x^2\\ d,x\left(1-3x\right)\left(4-3x\right)-\left(x-4\right)\left(3x+5\right)\\ =x\left(4-15x+9x^2\right)-\left(3x^2-7x-20\right)\\ =4x-15x^2+9x^3-3x^2+7x+20\\ =9x^3-18x^2+11x+20\)

Bài 1: Thực hiện phép tính:          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     e) (x3 – 3x2 + x – 3) : (x – 3)Bài 2: Tìm x, biết:a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        c) x3 - x =...
Đọc tiếp

Bài 1: Thực hiện phép tính:

          a) 2x.(3x2 – 5x + 3)                                 b) (-2x-1).( x2 + 5x – 3 ) – (x-1)3

c) (2x – y).(4x2 + 2xy + y2)            d) (6x5y2 – 9x4y3 + 15x3y4) : 3x3y2     

e) (x3 – 3x2 + x – 3) : (x – 3)

Bài 2: Tìm x, biết:

a) 5x(x – 1) = 10 (x – 1);                    b) 2(x + 5) – x2 – 5x = 0;        

c) x3 - x = 0;                                               d) (2x – 1)2 – (4x – 3)2 = 0               

e) (5x + 3)(x – 4) – (x – 5)x = (2x – 5)(5+2x )

Bài 3: Chứng minh rằng giá trị của biểu thức không phụ thuộc vào giá trị của biến.

a) x(3x + 12) – (7x – 20) + x2(2x – 3) – x(2x2 + 5).

b) 3(2x – 1) – 5(x – 3) + 6(3x – 4) – 19x.

Bài 4: Phân tích đa thức thành nhân tử.

          a) 10x(x – y) – 8(y – x)                      b) (3x + 1)2 – (2x + 1)2  

c) - 5x2 + 10xy – 5y2 + 20z2                   d) 4x2 – 4x +4 – y2                              

e) 2x2 - 9xy – 5y2                                             f) x3 – 4x2 + 4 x – xy2

Bài 5: Tìm giá trị nhỏ nhất của biểu thức

a) A = 9x2 – 6x + 11          b) B = 4x2 – 20x + 101 

Bài 6: Tìm giá trị lớn nhất của biểu thức   

                   a) A = x – x2                  b) B = – x2 + 6x – 11

1
22 tháng 8 2022

a) 2x.(3x2 – 5x + 3)        

=2x3-10x2+6x                                                                       

b(-2x-1).( x2 + 5x – 3 ) – (x-1)3

=-2x- 10x2 + 6x - x2 - 5x + 3 - x3 + 3x2 - 3x + 1

= -3x3 - 8x2 - 2x + 4

   d) (6x5y2 – 9x4y+ 15x3y4) : 3x3y

=2x2-3xy+5y2

 

 

 

10 tháng 12 2020

a) \(\left(x^5+4x^3-6x^2\right):4x^2\)

\(=\left(x^5:4x^2\right)+\left(4x^3:4x^2\right)+\left(-6x^2:4x^2\right)\)

\(=\dfrac{1}{4}x^3+x-\dfrac{3}{2}\)

b)  x^3 + x^2 - 12 x-2 x^3 - 2x^2 3x^2 - 12 3x^2 - 6x 6x - 12 x^2+3x+6 6x - 12 0

Vậy \(\left(x^3+x^2-12\right):\left(x-2\right)=x^2+3x+6\)

c) (-2x5 : 2x2) + (3x2 : 2x2) + (-4x^3 : 2x^2)

\(-x^3+\dfrac{3}{2}-2x\)

d) \(\left(x^3-64\right):\left(x^2+4x+16\right)\)

\(=\left(x-4\right)\left(x^2+4x+16\right):\left(x^2+4x+16\right)\)

\(=x-4\)

(dùng hẳng đẳng thức thứ 7)

Bài 2 :

a) 3x(x - 2) - 5x(1 - x) - 8(x2 - 3)

= 3x2 - 6x - 5x + 5x2 - 8x2 + 24

= (3x2 + 5x2 - 8x2) + (-6x - 5x) + 24 

= -11x + 24

b) (x - y)(x2 + xy + y2) + 2y3

= x3 - y3 + 2y3

= x3 + y3 

c) (x - y)2 + (x + y)2 - 2(x - y)(x + y)

= (x - y)2 - 2(x - y)(x + y) + (x + y)2

= [(x - y) + x + y)2 = [x - y + x + y] = (2x)2 = 4x2

 

18 tháng 10 2021

Bài 1 :

a]=  \(\frac{1}{4}\)x3 + x - \(\frac{3}{2}\).

b] => [x3 + x2 -12 ] = [ x2 +3 ][x-2] + [-6]

c]= -x3 -2x +\(\frac{3}{2}\).

d] = [ x3 - 64 ]  = [ x2 + 4x + 16][ x- 4].

25 tháng 12 2021

\(a,=10x^3-5x^2+5x\\ b,=x^3+27\\ c,=\dfrac{5}{2}xy-1-\dfrac{1}{2}y\\ d,=\left(2x^3-10x^2-11x^2+55x+12x-60\right):\left(x-5\right)\\ =\left[2x^2\left(x-5\right)-11x\left(x-5\right)+12\left(x-5\right)\right]:\left(x-5\right)\\ =2x^2-11x+12\)

25 tháng 12 2021

a: \(=10x^3-5x^2+5x\)

b: \(=x^3-27\)

Câu 4:

a: Sửa đề: E đối xứng D qua O

Xét tứ giác ADCE có

O là trung điểm chung của AC và DE

=>ADCE là hình bình hành

Hình bình hành ADCE có \(\hat{ADC}=90^0\)

nên ADCE là hình chữ nhật

b:

ADCE là hình chữ nhật

=>AE//CD và AE=CD

ΔABC cân tại A

mà AD là đường cao

nên D là trung điểm của BC

=>DB=DC

mà DC=AE
nên DB=AE

Vì AE//CD

nên AE//BD

Xét tứ giác AEDB có

AE//DB

AE=DB

Do đó: AEDB là hình bình hành

=>AD cắt BE tại trung điểm của mỗi đường

mà I là trung điểm của AD

nên I là trung điểm của BE

c: D là trung điểm của BC

=>\(DB=DC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)

ΔADB vuông tại D

=>\(AD^2+DB^2=AB^2\)

=>\(AD^2=10^2-6^2=64=8^2\)

=>AD=8(cm)

ΔABC có AD là đường cao

nên \(S_{ABC}=\frac12\cdot AD\cdot BC=\frac12\cdot8\cdot12=4\cdot12=48\left(\operatorname{cm}^2\right)\)

O là trung điểm của AC

=>\(S_{BOA}=\frac12\cdot S_{BAC}=\frac{48}{2}=24\left(\operatorname{cm}^2\right)\)

Câu 3:

a: ĐKXĐ của A là x<>4

\(x^2-3x=0\)

=>x(x-3)=0

=>\(\left[\begin{array}{l}x=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\\ x=3\end{array}\right.\)

Thay x=0 vào A, ta được:

\(A=\frac{0-5}{0-4}=\frac{-5}{-4}=\frac54\)

Thay x=3 vào A, ta được:

\(A=\frac{3-5}{3-4}=\frac{-2}{-1}=2\)

b: \(B=\frac{x+5}{2x}-\frac{x-6}{5-x}-\frac{2x^2-2x-50}{2x^2-10x}\)

\(=\frac{x+5}{2x}+\frac{x-6}{x-5}-\frac{2x^2-2x-50}{2x\left(x-5\right)}\)

\(=\frac{\left(x+5\right)\left(x-5\right)+2x\left(x-6\right)-2x^2+2x+50}{2x\left(x-5\right)}\)

\(=\frac{x^2-25+2x^2-12x-2x^2+2x+50}{2x\left(x-5\right)}=\frac{x^2-10x+25}{2x\left(x-5\right)}\)

\(=\frac{\left(x-5\right)^2}{2x\left(x-5\right)}=\frac{x-5}{2x}\)

c: Đặt P=A:B

\(=\frac{x-5}{x-4}:\frac{x-5}{2x}\)

\(=\frac{x-5}{x-4}\cdot\frac{2x}{x-5}=\frac{2x}{x-4}\)

Để P là số nguyên thì 2x⋮x-4

=>2x-8+8⋮x-4

=>8⋮x-4

=>x-4∈{1;-1;2;-2;4;-4;8;-8}

=>x∈{5;3;6;2;8;0;12;-4}

Kết hợp ĐKXĐ, ta được:x∈{3;6;2;8;12;-4}

Bài 1:

a: \(6x^2-3xy=3x\cdot2x-3x\cdot y=3x\left(2x-y\right)\)

b: \(x^2-y^2-6x+9\)

\(=x^2-6x+9-y^2\)

\(=\left(x-3\right)^2-y^2\)

=(x-3-y)(x-3+y)

c: \(x^2+5x-6\)

\(=x^2-x+6x-6\)

=x(x-1)+6(x-1)

=(x-1)(x+6)

Bài 2:

a: Sửa đề: \(\left(x+2\right)^2-\left(x-3\right)\left(x+1\right)\)

\(=x^2+4x+4-\left(x^2-2x-3\right)\)

\(=x^2+4x+4-x^2+2x+3\)

=6x+7

b: \(\left(x^3-2x^2+5x-10\right):\left(x-2\right)\)

\(=\frac{x^2\left(x-2\right)+5\left(x-2\right)}{x-2}\)

\(=x^2+5\)

26 tháng 10 2021

a: \(=\dfrac{5}{3}x^2-x+\dfrac{1}{3}\)

b: \(=-5y-9+xy\)

 

b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)

c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)