Cho biểu thức
\(A=\left(\frac{1}{\sqrt{X}-1}+\frac{1}{X-1}\right):\left(2-\frac{\sqrt{X}-4}{\sqrt{X}-1}\right)\)
a) Rút gọn A
b,Tìm GTNN của A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)
b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)
\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)
c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)
\(=\dfrac{3}{\sqrt{x}-2}\)
a/ ĐKXĐ: \(\hept{\begin{cases}x\ne1\\x\ge0\end{cases}}\)
\(A=\left[\frac{1}{\sqrt{x}-1}+\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\left[\frac{2\left(\sqrt{x}-1\right)-\sqrt{x}+4}{\sqrt{x}-1}\right]\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}+2}=\frac{1}{\sqrt{x}+1}\)
b/
Ta có: \(A=\frac{1}{\sqrt{x}+1}\ge1\)
Vậy Min A = 1 .Dấu "=" xảy ra khi x = 0
a , rút gọn : A= \(\left(\frac{1}{\sqrt{x}+1}+\frac{1}{x-1}\right):\left(2-\frac{\sqrt{x}-4}{\sqrt{x}-1}\right)\)
A= \(\left(\frac{1\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}+\frac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}-\frac{\sqrt{x}-4}{\sqrt{x}-1}\right)\)
A= \(\left(\frac{\sqrt{x}+1+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+4}{\sqrt{x}-1}\right)\)
A= \(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
A=\(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
A = \(\frac{1}{\sqrt{x}+1}\)