K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

2) Đặt \(\left\{{}\begin{matrix}x^2+ax+c=0\left(1\right)\\x^2+bx+d=0\left(2\right)\end{matrix}\right.\)

Xét \(\Delta_1\) của pt (1) = a2 - 4c

Xét \(\Delta_2\) của pt (2) = b2 -4d

Xét tổng 2 \(\Delta\) = a2 + b2 - 4c -4d

= (a - b)2 + 2ab - 4(c + d)

Có ab \(\ge2\left(c+d\right)\)

=> 2ab \(\ge\) 4(c + d)

=> 2ab - 4(c + d) \(\ge0\)

Có (a - b)2 \(\ge0\)

=> \(\Delta_1\) + \(\Delta_2\) \(\ge0\)

=> 1 trong 2 \(\Delta\ge0\)

=> 1 trong 2 pt có n0

19 tháng 4 2017

Điều kiện a,b,c không cho làm sao suy được mấy cái đó mà bảo chứng minh b.

29 tháng 12 2017

đề đúng rồi đó, đề của tớ còn ko có câu "và nghiệm còn lại âm" nữa cơ. Lúc tháng 4 chưa biết, vậy bây giờ bạn biết làm bài này ko?

28 tháng 7 2016

Ta có: \(\Delta1=\left(2b\right)^2-4ac=4b^2-4ac\)

\(\Delta2=\left(2c\right)^2-4ab=4c^2-4ab\)

\(\Delta3=\left(2a\right)^2-4bc=4a^2-4bc\)

\(\Rightarrow\Delta=\Delta1+\Delta2+\Delta3=4b^2-4ac+4c^2-4ab+4a^2-4bc\)

\(=2\left(2b^2-2ac+2c^2-2ab+2a^2-2bc\right)\)

\(=2\left(a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2\right)\)

\(=2\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\)

                                               Vậy với mọi a,b,c thì ít nhất một trong các pt sau có nghiệm

29 tháng 7 2016

ax^2 + 2bx + c = 0 (1) 
bx^2 + 2cx + a = 0 (2) 
cx^2 + 2ax + b = 0 (3) 
Xét: 
Δ1 = b² - ac 
Δ2 = c² - ab 
Δ3 = a² - bc 
ta có 2(Δ1+ Δ2 + Δ3) 
= 2(b² - ac) + (c² - ab) + (a² - bc) 
= (a² - 2ab + b² ) + (b² - 2bc + c²) + (c² - 2ac + a²) 
= (a - b)² + (b - c)² + (a - c)² ≥ 0 
=> Δ1+ Δ2 + Δ3 ≥ 0 
=> trong 3Δ: Δ1;Δ2; Δ3 phải có ít nhất 1Δ ≥ 0 
Vậy ít nhất 1phương trình có nghiệm => đpcm

29 tháng 8 2020

x2+ax+1=0

Δ1=a²−4

x2+bx+1=0

Δ2=b²−4

Do ab≥4 nên có ít nhất 1 trong 2 số aa và b≥2

→ Hoặc Δ1=a²−4≥0

→ Hoặc Δ2=b²≥0

25 tháng 10 2021

bài này dùng delta mọi người giúp mình với