K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

Bạn tự vẽ hình nhé!

a, Xét \(\Delta ABC.và.\Delta ABH.có:\)

\(\widehat{BAC}=\widehat{BHA}\) 

\(\widehat{B}.chung\)

\(\Rightarrow\Delta ABC\sim\Delta ABH\)

b, Áp dụng định lý Pytago vào tam giác vuông ABC, ta có:

\(BC^2=AB^2+AC^2\)

\(BC^2=4^2+5^2=41\\ \Rightarrow BC=\sqrt{41}\approx6,4\left(cm\right)\)

Vì \(\Delta ABC\sim\Delta ABH\) và \(\Delta ABC\) có đường cao AH:

\(\Rightarrow\dfrac{BH}{BA}=\dfrac{HC}{AC}\) ( 1 )

Dựa vào tính chất dãy tỉ số bằng nhau, ta lại có:

\(\left(1\right)\Rightarrow\dfrac{BH}{BA}=\dfrac{HC}{AC}=\dfrac{BH+HC}{BA+AC}=\dfrac{BC}{4+5}=\dfrac{6,4}{9}\)

\(\Rightarrow BH=\dfrac{4.6,4}{9}=2,8\left(cm\right)\)

3:

ΔAHB vuông tại H có HM là đường cao

nên AM*AB=AH^2

ΔAHC vuông tại H có HN là đường cao

nên AN*AC=AH^2

=>AM*AB=AN*AC

22 tháng 7 2018

 BÀI 1:

a)

·         Trong ∆ ABC, có:     AB2= BC.BH

                           Hay BC= =

·         Xét ∆ ABC vuông tại A, có:

    AB2= BH2+AH2

↔AH2= AB2 – BH2

↔AH= =4 (cm)

b)

·         Ta có: HC=BC-BH

      àHC= 8.3 - 3= 5.3 (cm)

·         Trong ∆ AHC, có:    

 

·                                         

22 tháng 7 2018

Bài 1:

A B C H E

a)  Áp dụng hệ thức lượng ta có:

   \(AB^2=BH.BC\)

\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)

\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)

Áp dụng Pytago ta có:

     \(AH^2+BH^2=AB^2\)

\(\Rightarrow\)\(AH^2=AB^2-BH^2\)

\(\Rightarrow\)\(AH^2=5^2-3^2=16\)

\(\Rightarrow\)\(AH=4\)

b)  \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)

Áp dụng hệ thức lượng ta có:

   \(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)

\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)

\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)

\(\Rightarrow\)\(HE=\frac{16}{5}\)

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

10 tháng 6 2023

loading...

Gọi độ dài đoạn BH là: \(x\) ( cm) ; \(x\) > 0; AC > AB nên  \(x\) < CH

Xét tam giác vuông HAB vuông tại H theo pytago ta có:

AB2 = HA2 + HB2 = 9,62 + \(x^2\) = 92,16 + \(x^2\)

Xét tam giác vuông AHC vuông tại H theo pytago ta có:

AC2 = HA2 + HC2 = 9,62 + (\(20-x\))2 = 92,16 + 400 - 40\(x\) + \(x^2\) 

AC2 = 492,16 - 40\(x\) + \(x^2\)

Xét tam giác vuông ABC vuông tại A theo pytago ta có:

AC2 + AB2 = BC2

492,16  - 40\(x\) + \(x^2\) + 92,16 + \(x^2\) = 202

(\(x^2\) + \(x^2\)) - 40\(x\) + (492,16 + 92,16) - 400 = 0

2\(x^2\) - 40\(x\) + 584,32 - 400 = 0

2\(x^2\)- 40\(x\) + 184,32 =0

\(x^2\) - 20\(x\) + 92,16 = 0

△' = 102 - 92,16 = 7,84 > 0

\(x\)1 =  -(-10) + \(\sqrt{7,84}\) =  12,8 ⇒ CH = 20 - 12,8 = 7,2 < BH  (loại )

\(x_2\) = -(-10) - \(\sqrt{7,84}\) = 7,2 ⇒ CH = 20 - 7,2 = 12,8 (thỏa mãn)

Thay \(x_2\) = 7,2 vào biểu thức: AB2 = 92,16 + \(x^2\) = 92,16 + 7,22 = 144 

⇒AB = \(\sqrt{144}\) = 12 

Thay \(x_2\) = 7,2 vào biểu thức: AC2 = 492,16 - 40\(x\) + \(x^2\) 

AC2 = 492,16 - 40\(\times\) 7,2 + 7,22 = 256

AC = \(\sqrt{256}\) = 16

Kết luận AB = 12 cm; AC = 16 cm 

 

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Lời giải:

Áp dụng định lý Pitago:

$BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5$ (cm)

Áp dụng hệ thức lượng trong tam giác vuông: 

$BH=\frac{AB^2}{BC}=\frac{3^2}{5}=\frac{9}{5}=1,8$ (cm) 

$CH=BC-BH=5-1,8=3,2$ (cm)

$\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}$

$\Rightarrow \frac{BD}{BD+CD}=\frac{3}{7}$

Hay $\frac{BD}{BC}=\frac{3}{7}\Rightarrow BD=\frac{3}{7}.BC=\frac{3}{7}.5=\frac{15}{7}$ (cm)

$CD=BC-BD=5-\frac{15}{7}=\frac{20}{7}$ (cm)

$HD=BD-BH=\frac{15}{7}-1,8=\frac{12}{35}$ (cm)

AH
Akai Haruma
Giáo viên
21 tháng 8 2023

Hình vẽ:

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

17 tháng 6 2023

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

\(\widehat{BAC}=\widehat{BHA}=90^o\)

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) (1)

\(\Rightarrow\dfrac{AB}{BC}=\dfrac{HB}{AB}\) hay \(\dfrac{AB}{4+9}=\dfrac{4}{AB}\Rightarrow AB^2=52\Rightarrow AB=\sqrt{52}=2\sqrt{13}cm\)

Xét \(\Delta\text{A}BC\) và \(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}=90^o\)

\(\widehat{C}\) chung

\(\Rightarrow\Delta ABC\sim\Delta HAC\left(g.g\right)\) (2)

Từ (1) và (2) \(\Rightarrow\Delta HAB\sim\Delta HCA\)

\(\Rightarrow\dfrac{AH}{HC}=\dfrac{HB}{AH}\) hay \(\dfrac{AH}{9}=\dfrac{4}{AH}\Rightarrow AH^2=36\Rightarrow AH=\sqrt{36}=6\left(cm\right)\)

Ta có \(\Delta ABC\) vuông tại A.

Áp dụng đinh lý Py-ta-go ta có:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{\left(4+9\right)^2-\left(2\sqrt{13}\right)^2}=3\sqrt{13}cm\)

b) Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot BC\cdot AH=\dfrac{1}{2}\cdot\left(4+9\right)\cdot6=39\left(cm^2\right)\)

17 tháng 6 2023