K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1=82

=>2y^4+12y^2-80=0

=>y^4+6y^2-40=0

=>(y^2+10)(y^2-4)=0

=>y^2-4=0

=>y=2 hoặc y=-2

10 tháng 7 2020

Bài làm:

Ta có: \(\left(y+1\right)^4+\left(y-1\right)^4=82\)

\(\Leftrightarrow y^4+4y^3+6y^2+4y+1+y^4-4y^3+6y^2-4y+1=82\)

\(\Leftrightarrow2y^4+12y^2-80=0\)

\(\Leftrightarrow y^4+6y^2-40=0\)

\(\Leftrightarrow\left(y^4+6y^2+9\right)-49=0\)

\(\Leftrightarrow\left(y^2+3\right)^2-7^2=0\)

\(\Leftrightarrow\left(y^2-4\right)\left(y^2+10\right)=0\)

Mà \(y^2+10\ge10>0\left(\forall x\right)\)

\(\Rightarrow y^2-4=0\Leftrightarrow y^2=4\Rightarrow y=\pm2\)

Vậy tập nghiệm của phương trình, \(S=\left\{-2;2\right\}\)

Học tốt!!!!

24 tháng 7 2020

(y + 1)^4 + (y - 1)^4 = 82

<=> y^4 + 4y^3 + 6y^2 + 4y + 1 + y^4 - 4y^3 + 6y^3 - 4y + 1 = 82

<=> 2y^4 + 12y^2 + 2 = 82

<=> 2y^4 + 12y^2 + 2 - 82 = 0

<=> 2y^4 + 12y^2 - 80 = 0

<=> 2(y^2 + 6y^2 - 40) = 0

<=> y^2 + 6y^2 - 40 = 0

<=> (y^2 - 4)(y^2 + 10) = 0

vì y^2 + 10 > 0 nên:

<=> y^2 - 4 = 0

<=> y^2 = 4

<=> y^2 = 2^2

<=> y = +-2

NV
16 tháng 4 2019

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Vậy \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2\ge\frac{\left(x^2+y^2\right)}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(x+y\right)^4}{8}\)

15 tháng 4 2019

mình giải ra vô nghiệm, bạn nào giúp vs

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

1.

HPT  \(\left\{\begin{matrix} (x+1)(y-1)=xy+4\\ (2x-4)(y+1)=2xy+5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} xy-x+y-1=xy+4\\ 2xy+2x-4y-4=2xy+5\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -x+y=5\\ 2x-4y=9\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} x=\frac{-29}{2}\\ y=\frac{-19}{2}\end{matrix}\right.\)

Vậy.............

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

2.

ĐKXĐ: $x\in\mathbb{R}$

$x^2+x-2\sqrt{x^2+x+1}+2=0$

$\Leftrightarrow (x^2+x+1)-2\sqrt{x^2+x+1}+1=0$

$\Leftrightarrow (\sqrt{x^2+x+1}-1)^2=0$

$\Rightarrow \sqrt{x^2+x+1}=1$

$\Rightarrow x^2+x=0$

$\Leftrightarrow x(x+1)=0$

$\Rightarrow x=0$ hoặc $x=-1$

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:
a/ ĐKXĐ: $x\geq 0; y\geq 1$

PT $\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-4\sqrt{y-1}+4]=0$

$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-2)^2=0$

Vì $(\sqrt{x}-1)^2\geq 0; (\sqrt{y-1}-2)^2\geq 0$ với mọi $x,y$ thuộc đkxđ

Do đó để tổng của chúng bằng $0$ thì:

$\sqrt{x}-1=\sqrt{y-1}-2=0$

$\Leftrightarrow x=1; y=5$

b. ĐKXĐ: $x\geq 0; y\geq 1; z\geq 2$

PT $\Leftrightarrow 2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z$

$\Leftrightarrow (x-2\sqrt{x}+1)+[(y-1)-2\sqrt{y-1}+1]+[(z-2)-2\sqrt{z-2}+1]=0$

$\Leftrightarrow (\sqrt{x}-1)^2+(\sqrt{y-1}-1)^2+(\sqrt{z-2}-1)^2=0$

$\Rightarrow \sqrt{x}-1=\sqrt{y-1}-1=\sqrt{z-2}-1=0$

$\Leftrightarrow x=1; y=2; z=3$

10 tháng 3 2021

Ta có:

\(\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\4\sqrt{x}-\sqrt{y-1}=2\end{matrix}\right.\) (đk \(x\ge0,y\ge1\))

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}+2\sqrt{y-1}=5\\8\sqrt{x}-2\sqrt{y-1}=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}9\sqrt{x}=9\\\sqrt{x}+2\sqrt{y-1}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=1\\1+2\sqrt{y-1}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\2\sqrt{y-1}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\\sqrt{y-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y-1=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\left(tm\right)\)

 

 

23 tháng 1 2022

ĐK:   \(x\ne0\) ; \(y\ne0\)

Hệ phương trình tương đương với:

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2=8\end{matrix}\right.\)

Đặt  \(S=\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)\)

         \(P=\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\)

Mà   \(S^2\ge4P\)

Ta có:      \(\left\{{}\begin{matrix}S=4\\S^2-2P=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S=4\\P=4\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}\left(x+\dfrac{1}{x}\right)+\left(y+\dfrac{1}{y}\right)=4\\\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)

⇔ \(\left\{{}\begin{matrix}x+\dfrac{1}{x}=2\\y+\dfrac{1}{y}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

          

19 tháng 12 2017

đặt 2 cái trong ngoặc kia là a và b, phân tích đa thức thành nhân tử ở VT

rồi chuyển sang cứ tạo thành hhằng đẳng thức rồi nhóm các nhân tử còn lại chia thành 2 nhóm và úc đó thay a,b theo x, y vào ,...

19 tháng 12 2017

làm cho mk luôn đi bạn