K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(P=-\left(x^2+4x-3\right)\)

\(=-\left(x^2+2.x.2+4-7\right)\)

\(=-\left(\left(x+2\right)^2-7\right)\)

\(=7-\left(x+2\right)^2\ge7\)

Max \(P=7\Leftrightarrow x+2=0\Rightarrow x=-2\)

26 tháng 7 2016

P=−(x2+4x−3)

=−(x2+2.x.2+4−7)

=−((x+2)2−7)

=7−(x+2)2≥7

Max P=7⇔x+2=0⇒x=−2

26 tháng 7 2016

\(P=3-4x-x^2\)

\(P=-\left(x^2+4x-3\right)\)

\(P=-\left(x^2+2.x.2+4-7\right)\)

\(P=-\left(\left(x+2\right)^2-7\right)\)

\(P=7-\left(x+2\right)^2\ge7\)

\(P_{MAX}=7\) khi \(x=-2\)

26 tháng 7 2016

\(P=3-4x-x^2\)

\(P=-\left(x^2+4x-3\right)\)

\(P=-\left(x^2+2.2x+4\right)+7\)

\(P=7-\left(x+2\right)^2\)

        Vì \(-\left(x+2\right)^2\le0\)

               Suy ra:\(7-\left(x+2\right)^2\le7\)

Dấu = xảy ra khi x+2=0

                           x=-2

    Vậy Max P=7 khi x=-2

 

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

22 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{1}{x^2-4x+7}\)

\(A=\frac{1}{\left(x^2-4x+4\right)+3}\)

\(A=\frac{1}{\left(x-2\right)^2+3}\)

Lại có : 

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\)\(\left(x-2\right)^2+3\ge3\)

\(\Rightarrow\)\(A=\frac{1}{\left(x-2\right)^2+3}\le\frac{1}{3}\)

Dấu "=" xảy ra khi và chỉ khi \(\left(x-2\right)^2+3=3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=3-3\)

\(\Leftrightarrow\)\(\left(x-2\right)^2=0\)

\(\Leftrightarrow\)\(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

Vậy GTLN của \(A\) là \(\frac{1}{3}\) khi 2\(x=2\)

Chúc bạn học tốt ~ 

22 tháng 4 2018

\(b)\) Ta có : 

\(f\left(x\right)=x^2-4x+7\)

\(f\left(x\right)=\left(x^2-4x+4\right)+3\)

\(f\left(x\right)=\left(x-2\right)^2+3\ge3>0\)

Vậy đa thức \(f\left(x\right)\) vô nghiệm 

Chúc bạn học tốt ~ 

15 tháng 10 2021

\(A=139\)

\(\Leftrightarrow720:\left(x-6\right)=40\)

\(\Leftrightarrow x-6=18\)

hay x=24

15 tháng 10 2021

còn 1 câu nữa ạ:((

1 tháng 7 2016

\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)

\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)

\(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)

Vậy MaxA=5 khi x=1

\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)

\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)

Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)

Vậy MaxB=4 khi x=2

a) \(4-x^2+2x\)

\(=-\left(x^2-2x-4\right)\)

\(=-\left(x^2-2x+1-5\right)\)

\(=-\left(\left(x-1\right)^2-5\right)\)

\(=5-\left(x-1\right)^2\ge5\)

MIn A = 5 khi \(x-1=0=>x=1\)

b) \(4x-x^2\)

\(=-\left(x^2-4x+4-4\right)\)

\(=>-\left(\left(x-2\right)^2-4\right)\)

\(=4-\left(x-2\right)\ge4\)

MIN B = 4 khi \(x-2=0=>x=2\)

Ủng hộ nha tối rồi

7 tháng 1 2020

a) Vì \(\left|x-5\right|\ge0\)nên \(100-\left|x-5\right|\le100\)

Để A lớn nhất thì \(\left|x-5\right|=0\Leftrightarrow x=-5\)

Vậy A lớn nhất bằng 100 khi và chỉ khi x= -5

b) Vì \(\left|y-3\right|\ge0\)nên \(\left|y-3\right|+50\ge50\)

Để B lớn nhất thì \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy B nhỏ nhất bằng 50 khi và chỉ khi y= 3

22 tháng 9 2021
Tập hợp các số tự nhiên n bằng ( 0 1 2 3 4...)
NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN