Tính các thừa số và tích của chúng, biết: aa . abc . bc = abc . abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ab.aba = abab
=> ab.aba = ab.101
=> ab = 10
b) a.b.ab = bbb
=> a.b.ab = b.111
=> a.ab = 111 = 3.37
=> ab = 37
c) aa.abc.bc = abcabc
=> aa.abc.bc = abc.1001
=> aa.bc = 1001 = 77.13
=> abc = 713
Xét ΔCAB có KD//AB
nên ΔCDK đồng dạng với ΔCBA
=>\(\dfrac{S_{CDK}}{S_{CBA}}=\left(\dfrac{CD}{CB}\right)^2\)
=>\(S_{CBA}=16:\dfrac{CD^2}{CB^2}=16\cdot\dfrac{CB^2}{CD^2}\)
Xét ΔBED và ΔBAC có
góc BED=góc BAC
góc B chung
=>ΔBED đồng dạng với ΔBAC
=>\(\dfrac{S_{BED}}{S_{BAC}}=\left(\dfrac{BD}{BC}\right)^2\)
=>\(S_{ABC}=9\cdot\dfrac{BC^2}{BD^2}=16\cdot\dfrac{BC^2}{CD^2}\)
=>3/BD=4/CD
=>BC=7/3BD
=>\(\dfrac{S_{BED}}{S_{BAC}}=\left(\dfrac{3}{7}\right)^2=\dfrac{9}{49}\)
=>\(S_{BAC}=49\left(cm^2\right)\)
Đáp án D
Ta có d ( AA ' , B C ) = d ( A A ' , ( B B ' C ' C ) ) = d ( A ' , ( B B ' C ' C ) )
Gọi M và M’ lần lượt là trung điểm BC và B’C’, G là trọng tâm của tam giác ABC
Theo giả thiết ta có B C ⊥ A M B C ⊥ A ' G ⇒ B C ⊥ ( A A ' G ) ⇒ B C ⊥ A A ' , nên tứ giác BB’C’C là hình chữ nhật có cạnh BC = a
Vì
V A ' A B C = 1 3 A ' G . S Δ A B C = 1 3 V L T = a 3 3 12 ⇒ A ' G = a ⇒ A A ' = A G 2 + A ' G 2 = 2 a 3
Có
V A ' B B ' C ' C = 2 3 V L T = a 3 3 6 = 1 3 d ( A ' , ( B B ' C ' C ) ) . S B B ' C ' C ⇒ d ( A ' , ( B B ' C ' C ) ) = 3 a 2
Đáp án D
Ta có d ( AA ' , B C ) = d ( A A ' , ( B B ' C ' C ) ) = d ( A ' , ( B B ' C ' C ) )
Gọi M và M’ lần lượt là trung điểm BC và B’C’, G là trọng tâm của tam giác ABC
Theo giả thiết ta có B C ⊥ A M B C ⊥ A ' G ⇒ B C ⊥ ( A A ' G ) ⇒ B C ⊥ A A ' , nên tứ giác BB’C’C là hình chữ nhật có cạnh BC = a
Vì
V A ' A B C = 1 3 A ' G . S Δ A B C = 1 3 V L T = a 3 3 12 ⇒ A ' G = a ⇒ A A ' = A G 2 + A ' G 2 = 2 a 3
⇒ S B B ' C ' C = 2 a 2 3
Có V A ' B B ' C ' C = 2 3 V L T = a 3 3 6 = 1 3 d ( A ' , ( B B ' C ' C ) ) . S B B ' C ' C ⇒ d ( A ' , ( B B ' C ' C ) ) = 3 a 2
Chọn D
Chọn B
Ta có A ' G ⊥ A B C nên A ' G ⊥ B C ; B C ⊥ A M ⇒ B C ⊥ M A A '
Kẻ M I ⊥ A A ' ; B C ⊥ I M nên d A A ' ; B C = I M = a 3 4
Kẻ G H ⊥ A A ' , ta có
Đáp án C
Ta dễ dàng chứng minh được A A ' / / B C C ' B '
⇒ d A A ' ; B C = d A A ' ; B C C ' B ' = d A ; B C C ' B '
Gọi G là trọng tâm của tam giác ABC. Suy ra A ' G ⊥ A B C .
Ta có S Δ A B C = a 2 3 4
⇒ V A B C . A ' B ' C ' = A ' G . S Δ A B C ⇔ A ' G = V A B C . A ' B ' C ' S Δ A B C = a 3 3 4 : a 2 3 4 = a
Lại có
A M = a 3 2 ⇒ A G = 2 3 A M = a 3 3 ⇒ A A ' = A ' G 2 + A G 2 = 2 a 3 3
Ta luôn có V A ' . A B C = 1 3 V A B C . A ' B ' C ' = 1 3 . a 3 3 4 = a 3 3 12 .
Mà V A B C . A ' B ' C ' = V A ' . A B C + V A ' . B C C ' B '
⇒ V A ' . B C C ' B ' = V A B C . A ' B ' C ' − V A ' . A B C = a 3 3 4 − a 3 3 12 = a 3 3 6 .
Gọi M,M' lần lượt là trung điểm của BC và B'C'. Ta có B C ⊥ A M , B C ⊥ A ' G ⇒ B C ⊥ A M M ' A ' ⇒ B C ⊥ M M ' . Mà M M ' / / B B ' nên B C ⊥ B B ' ⇒ B C C ' B ' là hình chữ nhật
⇒ S B C C ' B ' = B B ' . B C = 2 a 3 3 . a = 2 a 2 3 3 .
Từ
V A ' . B C C ' B ' = 1 3 d A ' ; B C C ' B ' . S B C C ' B ' ⇔ d A ' ; B C C ' B ' = 3 V A ' . B C C ' B ' S B C C ' B '
⇒ d A ' ; B C C ' B ' = a 3 3 2 : 2 a 2 3 3 = 3 a 4 . Vậy d A A ' ; B C = 3 a 4 .