cho tam giác nhọn ABC, có đường cao BH, CK.CMR: tam giác AHB đồng dạng tam giác AKC và góc AKH=góc BCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác AHB và tam giác AKC ta có
^AHB = ^AKC = 900
^A _ chung
Vậy tam giác AHB ~ tam giác AKC ( g.g )
\(\Rightarrow\frac{AH}{AK}=\frac{AB}{AC}\Rightarrow\frac{AC}{AK}=\frac{AB}{AH}\)
b, Xét tam giác AHK và tam giác ABC ta có :
^A _ chung
\(\frac{AC}{AK}=\frac{AB}{AH}\)( cmt )
Vậy tam giác AHK ~ tam giác ABC ( c.g.c )
Do 2 tam giác đồng dạng theo trường hợp c.g.c tức là ^AHK = ^ABC
mà ^ABC = 580 => ^AHK = 580
a) - Ta có: SABCD=AH.BC=AK.AB.
=>\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\)
- Ta có: \(\widehat{ABC}+\widehat{BAD}=180^0\) (AD//BC).
=>\(\widehat{ABC}+\widehat{BAH}+\widehat{HAK}+\widehat{KAD}=180^0\)
=>\(90^0+\widehat{HAK}+\widehat{KAD}=180^0\)
=>\(\widehat{HAK}+\widehat{KAD}=90^0\) mà \(\widehat{KAD}+\widehat{ADK}=90^0\) (tam giác ADK vuông tại K) nên \(\widehat{HAK}=\widehat{ADK}\) mà \(\widehat{ADK}=\widehat{ABC}\) (ABCD là hình bình hành) nên\(\widehat{HAK}=\widehat{ABC}\)
- Xét tam giác AKH và tam giác BCA có:
\(\dfrac{AH}{AK}=\dfrac{AB}{BC}\) (cmt)
\(\widehat{HAK}=\widehat{ABC}\) (cmt)
=> Tam giác AKH ∼ Tam giác BCA (c-g-c).
b) - Ta có: Tam giác AKH ∼ Tam giác BCA (cmt) nên:
\(\widehat{AKH}=\widehat{ACB}=40^0\) (2 góc tương ứng)
hình tự kẻ ạ :3
a)
xét ΔABE và ΔACF có:
\(\left\{{}\begin{matrix}\widehat{A}\left(chung\right)\\\widehat{AFC}=\widehat{AEB}=90^0\left(CF\perp AB;BE\perp AC\right)\end{matrix}\right.\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AB}=\dfrac{AF}{AE}\Leftrightarrow AC.AE=AB.AF\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc DAB chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD/AB=AE/AC
=>ΔADE đồng dạng vơi ΔABC
b: Xet ΔHEB vuông tại E và ΔHDC vuông tại D co
góc EHB=góc DHC
=>ΔHEB đồng dạng vơi ΔHDC
=>HE/HD=HB/HC
=>HE*HC=HB*HD
Xét tứ giác BHCK co
BH//CK
BK//CH
=>BHCK là hình bình hành
=>BC cắt HK tại trung điểm của mỗi đường
=>H,M,K thẳng hàng
ΔAED đồg dạng với ΔACB
=>góc AED=góc ACB
d: Xét ΔBEC vuông tại E và ΔBOA vuông tại O có
góc EBC chung
=>ΔBEC đồng dạng với ΔBOA
=>BE/BO=BC/BA
=>BE*BA=BO*BC
Xét ΔCDB vuông tại D và ΔCOA vuông tại O có
góc OCA chung
=>ΔCDB đồng dạng với ΔCOA
=>CD/CO=CB/CA
=>CO*CB=CD*CA
=>BE*BA+CD*CA=BC^2
Xét tam giác AHB và tam giác AKC
^A _ chung ; AB = AC
Vậy tam giác AHB = tam giác AKC (ch-gn)
=> AH/AK = AB/AC => AH/AB = AK/AC
Xét tam giác AKH và tam giác ACB có
^A _ chung; AH/AB = AK/AC
Vậy tam giác AKH ~ tam giác ACB (c.g.c)