K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2016

Câu a)
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-2\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)\)
\(=\left(2^{100}+2^{99}+2^{98}+2^{97}+...+2^2+2\right)-\left(2^{100}+2^{98}+2^{96}+...+2^4+2^2\right)\)
\(=2^{99}+2^{97}+2^{95}+...+2^3+2\)
\(=\frac{2^2\cdot\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{\left(2^{101}+2^{99}+2^{97}+...+2^5+2^3\right)-\left(2^{99}+2^{97}+2^{95}+...+2^3+2\right)}{3}\)
\(=\frac{2^{101}-2}{3}\)

6 tháng 4 2017

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2015.2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{2.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)

\(2B=\frac{1}{1.2}-\frac{1}{2016.2017}\)

\(B=\frac{\frac{1}{1.2}-\frac{1}{2016.1017}}{2}\)

24 tháng 9 2021

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

24 tháng 9 2021

cau a thi sao ha ban ? 

23 tháng 6 2016

Bài 1 lớp 7 không làm được thì chết đi

Bài 2:

4B=1.2.3.4+2.3.4.(5-1)+..........+(n-1).n.(n+1).[(n+2)-(n-2)]

4B=1.2.3.4+2.3.4.5-1.2.3.4+.......+(n-1).n.(n+1).(n+2)-(n-2).(n-1).n.(n+1)

4B=(n-1).n.(n+1).(n+2)

B=\(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)

13 tháng 2 2018

A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)

3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)

3A-A= \(1-\frac{1}{3^{2008}}\)

13 tháng 2 2018

B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)

3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)

3B - B = \(1-\frac{1}{3^n}\)