\(a\ge b\ge c\ge d;\)
\(a,b,c,d\) là 1 hoặc 2 hoặc 3
có bao nhiêu a,b,c,d thỏa mãn ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow a^2-b^2+c^2\ge a^2+b^2+c^2-2ab+2ac-2bc\)
\(\Leftrightarrow b^2-ab+ac-bc\le0\)
\(\Leftrightarrow b\left(b-a\right)-c\left(b-a\right)\le0\)
\(\Leftrightarrow\left(b-c\right)\left(b-a\right)\le0\) (luôn đúng do \(a\ge b\ge c\))
Dấu "=" xảy ra khi \(\left[{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
b/ Tương tự như câu trên:
\(a^2-b^2+c^2-d^2\ge\left(a-b+c\right)^2-d^2=\left(a-b+c-d\right)\left(a-b+c+d\right)\ge\left(a-b+c-d\right)^2\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}a\ge c+d\\b\ge c+d\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-c\ge d\ge0\\b-d\ge c\ge0\end{matrix}\right.\)
\(\Rightarrow\left(a-c\right)\left(b-d\right)\ge cd\)
\(\Leftrightarrow ab-bc-ad+cd\ge cd\)
\(\Leftrightarrow\) \(ab\ge ad+bc\left(đpcm\right)\)
Lời giải:
a) Ta có:
\(a^2-b^2+c^2\geq (a-b+c)^2\)
\(\Leftrightarrow a^2-b^2+c^2\geq a^2+b^2+c^2-2ab-2bc+2ac\)
\(\Leftrightarrow 2ab+2bc\geq 2b^2+2ac\)
\(\Leftrightarrow ab+bc\geq b^2+ac\Leftrightarrow b(a-b)+c(b-a)\geq 0\)
\(\Leftrightarrow (a-b)(b-c)\geq 0\)
BĐT trên luôn đúng do \(a\geq b\geq c\)
Do đó ta có đpcm.
b) \(a^2-b^2+c^2-d^2\geq (a-b+c-d)^2\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq (a-b)^2+(c-d)^2+2(a-b)(c-d)\)
\(\Leftrightarrow a^2-b^2+c^2-d^2\geq a^2+b^2+c^2+d^2-2ab-2cd+2ac-2ad-2bc+2bd\)
\(\Leftrightarrow 2(ab+cd+ad+bc)\geq 2(b^2+d^2)+2ac+2bd\)
\(\Leftrightarrow ab+cd+ad+bc\geq b^2+d^2+ac+bd\)
\(\Leftrightarrow b(a-b)+d(c-d)+d(a-b)-c(a-b)\geq 0\)
\(\Leftrightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
BĐT trên luôn đúng do:
\(\left\{\begin{matrix} d\geq 0\\ a\geq b\rightarrow a-b\geq 0\\ c\geq d\rightarrow c-d\geq 0\\ b\geq d\rightarrow b+d-c\geq 0\end{matrix}\right.\Rightarrow (a-b)(b+d-c)+d(c-d)\geq 0\)
Do đó ta có đpcm.
\(a\ge b\Leftrightarrow a^2\ge b^2\Leftrightarrow a^2-b^2\ge0\)
\(c\ge d\Leftrightarrow c^2\ge d^2\Leftrightarrow c^2-d^2\ge0\)
\(-ab+ac\le0\)
\(-ad-cd\le0\)
\(-bc+bd\le0\)
\(\Rightarrow2\left(-ab+ac-ad-cd-bc+bd\right)\le0\)
\(\Rightarrow a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
Bằng nhau khi và chỉ khi a = b = c = d
Dấu lớn xảy ra khi a> b >c > d
***Mình chẳng hiểu bài làm của mình đâu. Mong bạn thông cảm. Bạn mà hiểu được thì qủa là thiên tài ***********
1/ \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)
\(\Leftrightarrow bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(bc-ac\right)+\left(ab-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\)(đúng)
Vì \(\hept{\begin{cases}a\ge b\\b\ge c\end{cases}}\)
2/ \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
\(\Leftrightarrow-d^2+cd-bd+ad+bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(dc-d^2\right)+\left(ad-bd\right)+\left(bc-ac\right)+\left(ba-b^2\right)\ge0\)
\(\Leftrightarrow d\left(c-d\right)+d\left(a-b\right)+\left(a-b\right)\left(b-c\right)\ge0\)
Đúng vì \(a\ge b\ge c\ge d\ge0\)
1)a)\(4x^2-xy+y^2\ge0\)
\(\Leftrightarrow\left(\dfrac{1}{4}x^2-xy+y^2\right)+\dfrac{15}{4}x^2\ge0\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-y\right)^2+\dfrac{15}{4}x^2\ge0\)(luôn đúng)
b)\(a^2+b^2+2c^2\ge2c\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2c^2-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)
c)Ta có:\(\left(a^2-b^2\right)\ge0\)
\(\Rightarrow a^4+b^4\ge2a^2b^2\)(1)
TT\(\Rightarrow c^4+d^4\ge2c^2d^2\)(2)
\(2a^2b^2+2c^2d^2\ge4abcd\left(3\right)\)
Từ (1)(2)(3)=>đpcm
Có 10 a,b,c,d thỏa mãn.