K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

21 tháng 11 2018

parabol (P): y =  x 2  ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x 2  = 2x + m ⇔  x 2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1

PTHĐGĐ là:

x^2-2x-m+1=0

Δ=(-2)^2-4*1*(-m+1)

=4+4m-4=4m

Để (P) tiếp xúc (d) thì 4m=0

=>m=0

=>x^2-2x+1=0

=>x=1

=>y=1

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

Phương trình hoành độ giao điểm là:

\(x^2-2x-m^2-m+3=0\)

\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)

\(=4+4m^2+4m-12=4m^2+4m-8\)

\(=4\left(m+2\right)\left(m-1\right)\)

Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0

=>m=-2(loại) hoặc m=1(nhận)

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

Bạn ghi rõ hơn được không?

d: y=-2x+m cái gì 1?

PTHĐGĐ là:

x^2-2x-m+2=0

Δ=(-2)^2-4(-m+2)

=4+4m-8=4m-4

Để (P) tiếp xúc (d) thì 4m-4=0

=>m=1

=>x^2-2x+1=0

=>x=1

=>y=1

17 tháng 5 2021

đơn giản vl

12 tháng 3 2023

Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=mx+5\)

\(x^2-mx-5=0\)

\(\Delta=m^2+20\)

Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt

Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt

Câu tìm m bạn ghi rõ đề ra nhá

12 tháng 3 2023

đề ns z á chắc đề sai đâu r cảm ơn bn nhiều