Tìm x nguyên để mỗi p/s sau có giá trị nguyên:
\(B=\frac{2x+8}{5}-\frac{x}{5}\)
\(C=\frac{2x+9}{x+3}-\frac{5x+17}{x+3}-\frac{3x}{x+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
Gợi ý thôi nhé
a: x^2 - 5x + 8 = x^2 - 3x - 2x + 6 + 2 = (x-3).(x-2) + 2
=> Phân thức sẽ nguyên khi 2/(x-3) nguyên (Do x-3 nguyên bởi x nguyên)
<=> x-3 thuộc Ư(2) do x nguyên
Các câu khác thì cứ làm sao cho nó thành đa thức như thế
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
a) ĐKXĐ: \(\hept{\begin{cases}x+3\ne0\\3-x\ne0\\x^2-9\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne-3\\x\ne3\\x\ne3;x\ne-3\end{cases}}}\)
Vậy ĐKXĐ: x khác -3; x khác 3 ( b vào tcn của mìnk để thấy chi tiết)
Rút gọn:
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\) MTC: (x-3)(x+3)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-\left(3x^2-2x-9\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{9x-3x^2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{-3x}{x+3}\)
Vậy A=-3x/x+3 với x khác 3 và x khác -3
b) |x-2|=1
Bỏ dấu gt tuyệt đối ta có 2 TH: (đối chiếu đkxđ)
* x-2=1=> x=1+2=>x=3 (o t/m)
*x-2=-1=>x=-1+2=>x=1 (tm)
Thay x=1 vào phân thức A rút gọn ta có:
\(A=\frac{-3x}{x+3}=\frac{-3.1}{1+3}=\frac{-3}{4}\)
Vậy A=-3/4 khi x=1
c) Để A có gt nguyên => A thuộc Z
=> \(A=\frac{-3x}{x+3}\in Z\)
Ta có: -3x chia hết x+3
=> -3(x-3)-9 chia hết x+3
=> -9 chia hết cho x+3
=> x+3 thược Ư(-9)={1;-1;9;-9;3;-3)
Lập bảng thay vào hoặc o cần cx được
x+3 | 1 | -1 | 9 | -9 | 3 | -3 |
x | -2(tm) | -4(tm) | 6(tm) | -12(tm) | 0(tm) | -6(tm) |
Vậy...
ĐKXĐ:\(x\ne-3;x\ne3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}-\frac{3x^2-2x-9}{x^2-9}\)
\(=\frac{5}{x+3}+\frac{2}{x-3}-\frac{3x^2-2x-9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\frac{3x}{x+3}\)
b
\(\left|x-2\right|=1\Rightarrow x-2=1\left(h\right)x-2=-1\Rightarrow x=3;x=1\)
Tại \(x=3\) thì \(A=-\frac{3\cdot3}{3+3}=-\frac{9}{6}=-\frac{3}{2}\)
Tại \(x=1\) thì \(A=-1\cdot\frac{3}{1+3}=-\frac{3}{4}\)
c
Để A nguyên thì \(\frac{3x}{x+3}\) nguyên
\(\Rightarrow3x⋮x+3\)
\(\Rightarrow3\left(x+3\right)-9⋮x+3\)
\(\Rightarrow9⋮x+3\)
\(\Rightarrow x+3\in\left\{1;3;9;-1;-3;-9\right\}\)
\(\Rightarrow x\in\left\{-2;0;6;-4;-6;-12\right\}\)
a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng:
2x + 1 | -5 | -1 | 1 | 5 |
x | -3 | -1 | 0 | 2 |
Do vậy \(x=\left\{-3;-1;0;2\right\}\)
b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)
\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)
\(=x^2-5x+10+\frac{15}{x+2}\)
Để A nguyên
=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)
=> 15 chia hết cho x + 2
=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}
...
bn tự xét nha
a, \(ĐKXĐ:x\ne\pm\frac{1}{5},x\ne\frac{3}{2}\)
\(\Rightarrow P=\frac{\left(5x+1\right)\left(x+2\right)}{\left(2x-3\right)\left(5x-1\right)\left(5x+1\right)}-\frac{\left(8-3x\right)\left(5x+1\right)}{\left(5x-1\right)\left(5x+1\right)\left(2x-3\right)}\)
\(=\frac{x+2}{\left(2x-3\right)\left(5x-1\right)}-\frac{8-3x}{\left(5x-1\right)\left(2x-3\right)}\)
\(=\frac{2\left(2x-3\right)}{\left(2x-3\right)\left(5x-1\right)}=\frac{2}{5x-1}\)
b, Để P có giá trị nguyên thì \(2⋮5x-1\)
\(\Rightarrow5x-1\in\left\{1,2,-1,-2\right\}\)
=> x=..............
ĐKXĐ : x \(\ne\frac{3}{2}\) ; \(x\ne\frac{1}{5};x\ne-\frac{1}{5}\)
P= \(\frac{5x+1}{2x-3}.\left(\frac{x+2}{25x^2-1}-\frac{8-3x}{25x^2-1}\right)\)
P= \(\frac{5x-1}{2x-3}.\left(\frac{4x-6}{\left(5x+1\right).\left(5x-1\right)}\right)\)
P= \(\frac{5x-1}{2x-3}.\frac{2\left(2x-3\right)}{\left(5x-1\right)\left(5x+1\right)}\)
P= \(\frac{2}{5x-1}\)
KL
\(B=\frac{2x+8}{5}-\frac{x}{5}\)
\(B=\frac{2x+8-x}{5}=\frac{x+8}{5}\)
Để B có giá trị nguyên
=> x + 8 chia hết cho 5
=> x + 8 thuộc Ư(5) = {1 ; -1 ;5 ;-5}
thế x + 8 vô từng ước của 5 rồi tìm x nha
\(C=\frac{2x+9}{x+3}-\frac{5x+17}{x+3}-\frac{3x}{x+3}\)
\(C=\frac{2x+9-5x+17-3x}{x+3}=\frac{-6x+9+17}{x+3}=\frac{-6x+16}{x+3}\)
Để C có giá trị nguyên
=> -6x + 16 chia hết cho x +3
=> (-6). x + (-18) + 34 chia hết cho x + 3
=> (-6) . (x + 3) + 34 chia hết cho x + 3
=> 34 chia hết cho x +3
=> x + 3 thuộc Ư(34) = {-1 ; 1 ; -2 ; 2 ; -17 ; 17 ; -34 ;34}
còn lại giống bài đầu
Bạn ơi, 9+17=16 à bạn?