Tìm số n thuôc N* sao cho n^3-n^2+ n-1 là số nguyên tố
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HC
13 tháng 12 2016
1. Vì p+3>2 =>p+3 là số lẻ =>p là số chẵn mà p là số nguyên tố =>p=2
2.Ta gọi ƯCLN(n+1;2n+3) là a với a là số tự nhiên
=>n+1;2n+3 chia hết cho a
=>2.(n+1);2n+3 chia hết cho a
=>2n+2;2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=>1 chia hết cho a
=>a=1
=>n+1 và 2n+3 là hai số nguyên tố cùng nhau
TD
0
TB
0
TV
1
AH
Akai Haruma
Giáo viên
20 tháng 7
Lời giải:
$n^3-n^2+n-1=(n^3-n^2)+(n-1)=n^2(n-1)+(n-1)=(n-1)(n^2+1)$
Để số trên là snt thì 1 trong 2 thừa số $n-1, n^2+1$ bằng $1$ và thừa số còn lại là snt.
Mà $n-1< n^2+1$ với mọi $n\in\mathbb{N}^*$
$\Rightarrow n-1=1\Rightarrow n=2$
Khi đó:
$n^3-n^2+n-1=(n-1)(n^2+1)=1(2^2+1)=5$ (tm)
Vậy.........