K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

P=1+\(\frac{1}{\sqrt{x}-1}\)

Vì \(\frac{1}{\sqrt{x}-1}\)>0

suy ra Pmax \(\Leftrightarrow\)\(\frac{1}{\sqrt{x}-1}\)nhỏ nhất

Mà \(\frac{1}{\sqrt{x}-1}\)nhỏ nhất\(\Leftrightarrow\)\(\sqrt{x}-1\)là số nguyên dương nhỏ nhất là 1

suy ra \(\sqrt{x}\)=2\(\Rightarrow\)x=4

aizzzz bài này giải rồi mà taaa

Lướt xuống là thấy

Học tốt!!!!!

5 tháng 12 2016

Dk: x\(\ge0\)

lien hop

\(\Leftrightarrow\sqrt{x+3}-\sqrt{x}=1\)

\(\Leftrightarrow\sqrt{x+3}=2\Rightarrow x=1\)

7 tháng 12 2016

B​ạn có thể giải thích rõ hộ mình dc k???

21 tháng 8 2017

Đặt biểu thức trên bằng A. ĐK: \(x\ge0;x\ne1\)

\(A=\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}:\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}+\frac{1}{1-\sqrt{x}}\)

\(A=\frac{1}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

\(A=\frac{1}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}\)

\(A=\frac{1-\sqrt{x}+2\sqrt{x}}{2\sqrt{x}\left(1-\sqrt{x}\right)}=\frac{1+\sqrt{x}}{2\sqrt{x}-2x}\)

21 tháng 8 2017

Cảm ơn bạn

7 tháng 7 2017

đề sai hay vô nghiệm nhỉ

pt lớn thế này vô nghiệm hơi phí chắc sai đề

7 tháng 7 2017

sorry nha, mình ghi nhầm đề =((( mình sẽ ghi lại

3 tháng 8 2016

\(pt\Leftrightarrow\left(x^2+x+2\right)^2=4\left(2x^3-x^2+x+1\right)\)

\(\Leftrightarrow x^4-6x^3+9x^2=0\Leftrightarrow\left(x^2-3x\right)^2=0\)

3 tháng 8 2016
Cảm ơn Mr Lazy nhé !

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

7 tháng 7 2017

tui làm rồi mà lập lại đi :v

7 tháng 7 2017

Câu hỏi của Nguyễn Thị Bích Ngọc - Toán lớp 9 - Học toán với OnlineMath

18 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)

\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)

\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)

\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)

\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)

Suy ra \(2x^2-1=0\)  hoặc \(16x^4-16x^2+1=0\)

Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)

18 tháng 8 2017

ĐK:\(-1\le x\le1\)

\(\sqrt{\frac{1+2x\sqrt{1-x^2}}{2}}=1-2x^2\)

\(\Leftrightarrow\frac{1+2x\sqrt{1-x^2}}{2}=4x^4-4x^2+1\)

\(\Leftrightarrow\frac{2x\sqrt{1-x^2}}{2}=\frac{8x^4-8x^2+1}{2}\)

\(\Leftrightarrow2x\sqrt{1-x^2}=8x^4-8x^2+1\)

\(\Leftrightarrow4x^2\left(1-x^2\right)=64x^8-128x^6+80x^4-16x^2+1\)

\(\Leftrightarrow-\left(2x^2-1\right)^2\left(16x^4-16x^2+1\right)=0\)

Suy ra \(2x^2-1=0\)  hoặc \(16x^4-16x^2+1=0\)

Suy ra \(x=-\frac{1}{\sqrt{2}}\) hoặc \(16\left(x^2-\frac{1}{2}\right)^2-3=0\Rightarrow x=\frac{\sqrt{12}-2}{\sqrt{32}}\) (thỏa)