Một chất điểm dao động điều hoà dọc theo trục Ox. Phương trình dao động là x = 5cos(πt+π/6) cm. Quãng đường vật đi từ thời điểm ban đầu tới thời điểm t = 343/36 s là
A. 100,437 cm. B. 97,198 cm. C. 96,462 cm. D. 89, 821cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp: Sử dụng đường tròn lượng giác
Cách giải:
Chu kỳ dao động T = 2s
Quan sát trên hình vẽ ta thấy quãng đường vật đi được từ thời điểm t1 = 0,5s ứng với vị trí (1) đến thời điểm t2 = 1s ứng với vị trí (2) là: (5 + 5 3 ) = 13,7cm
Tại t = 0, vật đang ở vị trí biên âm.
Ta có S = 2,5A = 12,5 cm → vật mất khoảng thời gian
Đáp án D
ü Đáp án D
+ Tại t = 0, vật đang ở vị trí biên âm.
Ta có S = 2,5A = 12,5 cm → vật mất khoảng thời gian Δ t = T 2 + T 6 = 2 15 s
Đáp án D
Bạn dùng vòng tròn để giải :
- Lúc t = 0 vật qua vị trí 1,5 cm theo chiều +, góc hợp với OX là \(\frac{\pi}{3}\)
- khi t = 0,157 s = \(\frac{\pi}{20}\) thì trên vòng tròn nó sẽ quét được góc \(\frac{\pi}{2}\) vậy góc hợp với trục ox là \(\frac{\pi}{6}\)
Vậy x = 1,5 \(\sqrt{3}\)
=> S = 1,5 + (3 - 1,5 \(\sqrt{3}\)) = 1,9
\(T=\frac{2\pi}{\omega}=\frac{157}{250}s\)
\(\Delta t=\frac{157}{1000}=\frac{T}{4}=\frac{T}{12}+\frac{T}{6}\)
Tại thời điểm t=0s vật ở vị trí \(x=\frac{A}{2}=1,5cm\) đi theo chiều âm của trục tọa độ.
Vậy quãng đường vật đi được là
\(S=\frac{A}{2}+\frac{A\sqrt{3}}{2}=\frac{3+3\sqrt{3}}{2}=4,098\approx4,1\) cm
Vậy C đúng