so sánh:
A=5^100+6/5^100+4
B=5^100+7/5^100+5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+5^3+..+5^{100}\)
\(5A=5+5^2+5^3+..+5^{101}\)
\(A=\frac{5^{101}-1}{4}\)\(SUYRA\) \(A< B\)
\(A=5^0+5+5^2+...+5^{100}.\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{101}\)
\(\Rightarrow5A-A=4A=\left(5+5^2+5^3+...+5^{101}\right)-\left(5^0+5+5^2+...+5^{100}\right)\)
\(=5^{101}-1\)
\(\Rightarrow A=\frac{5^{101}-1}{4}\)
Còn lại tự lm nha bn
Áp dụng a/b > 1 => a/b > a+m/b+m (a,b,m thuộc N*)
=> \(\frac{5^{100}+6}{5^{100}+4}>\frac{5^{100}+6+1}{5^{100}+4+1}\)
\(>\frac{5^{100}+7}{5^{100}+5}\)
A=5^100+6=5^100+5+1=5^101+1 ; 5^100+4=5^100+5-1=5^101-1
B=5^100+7=5^100+5+2=5^101+2 ; 5^100+5=5^101
vs nha
Ta có 2A = 22+23 +......+2100+2101
=> 2A - A = A = 22+23+.......+2101 - 2 - 22 - ....... -2100
= 2101 - 2
5B = 52 + 53 + ... + 5101
=> 4B = 5B - B = 52 + 53 + .....+5101 - 5 - 52 - 5100
= 5101 - 5
Vậy A + 4B = 5101 + 2101 - 7
Ta có: A= 2 + 2^2 +...+ 2^100
Suy ra 2A= 2^2 + 2^3 +...+ 2^101
2A - A= (2^2 + 2^3 +...+ 2^101) - (2 + 2^2 +...+ 2^100)
A= 2^2 + 2^3 +...+ 2^101 - 2 - 2^2 -...- 2^100
A= 2^101 - 2
Và B= 5+ 5^2 + ..... + 5^100
Suy ra 5B= 5^2+ 5^3 + ..... + 5^101
5B - B= (5^2 + 5^3 +...+ 5^101) - (5 + 5^2 +...+ 5^100)
4B= 5^2 + 5^3 +...+ 5^101 - 5 - 5^2 -...- 5^100
4B= 5^101 - 5
Suy ra A + 4B = 2^101 - 2 + 5^101 -5
A + 4B = 2^101 + 5^101 -7
Vậy A + 4B = 2^101 + 5^101 -7
Chúc bạn học tốt
\(\dfrac{7}{10}=0,7;\dfrac{7}{100}=0,07;6\dfrac{38}{100}=6,38;\dfrac{2014}{1000}=2,014;\dfrac{3}{2}=1,5;\dfrac{2}{5}=0,4;\dfrac{5}{8}=0,625;1\dfrac{1}{4}=1,25;6\dfrac{38}{100}=6,38\)
Ta có:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
\(...\)
\(\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow M< N\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
B=\(\frac{5^{100}+7}{5^{100}+5}\)=\(\frac{5^{100}+6+1}{5^{100}+4+1}\)
Mà \(\frac{5^{100}+6+1}{5^{100}+4+1}\)>\(\frac{5^{100}+6}{5^{100}+4}\)
\(\Rightarrow\)B>A