K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

\(2016+2x\left(2017-a\right)=2016+2x2017-2xa=2016+4034-2xa=6050-2xa\)

Để \(2016+2x\left(2017-a\right)\)có giá trị lớn nhất thì \(6050-2xa\) có giá trị lớn nhất

=>2xa có giá trị nhỏ nhất

=>a có giá trị nhỏ nhất

=>a=0

Khi đó \(2016+2x\left(2017-a\right)=6050-2x0=6050-0=6050\)

Vậy...

23 tháng 7 2016

a=0 và giá trị đó bằng 6050

11 tháng 11 2021
Thôi nhắn chả hiểu luôn
11 tháng 11 2021
Chịu vì nhắn ko hiểu luôn
28 tháng 11 2016

\(\left(x-2016\right)^2\ge0\Rightarrow A_{min}=0+2017=2017\)khi đó : \(\left(x-2016\right)^2=0\Rightarrow x-2016=0\Rightarrow x=2016\)

Vậy \(A\)đạt giá trị nhỏ nhất là 2017 khi x=2016

Chúc bạn học giỏi,

30 tháng 7 2018

Vì /x-2106/ >= 0

=> /x-2016/+2015 >= 2015

=> Min = 2015 <=> x = 2016

17 tháng 9 2023

a) Ta có: 

\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:

\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)

b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)

\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)

\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)

\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)

\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)

\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)

Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{12}=0\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)

17 tháng 9 2023

Cảm ơn cậu ạ

27 tháng 3 2018

do (x+2)2>=0 với mọi x ; (y-2)2>=0 mọi y => (x+2)-(y-2)2>=0 mọi x,y => 4 -(x+2)2-(y-2)2>=4 với mọi x, y

dấu = xảy <=> x+2=0                       

                                       =>x=-2 ; y=2

                       y-2=0

27 tháng 3 2018

Với x= - 2;y= 2 thì giá trị lớn nhất của biểu thức là A=4