K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 7: Chọn A

 

28 tháng 3 2021

7A

8 Không có begin - end; để bao quát các câu lệnh ở lệnh lặp while do này thì đây là vòng lặp vô hạn bạn nhé. (Mình dịch không được đáp án B nên bạn dựa vào dữ liệu mình cho để khoanh đáp án chính xác nhé)

b: PTHĐGĐ là;

ax^2=2

=>ax^2-2=0

Δ=0^2-4*a*(-2)=8a

Để (P) cắt (d) tại hai điểm pb thì 8a>0

=>a>0

=>x=căn 2/a hoặc x=-căn 2/a

=>vecto OA=(căn 2/a;0); vecto OB=(-căn 2/a;0); vecto AB=(2*căn 2/a;2)

Theo đề, ta có: vecto OA*vecto OB=0 hoặc vecto OA*vecto AB=0 hoặc vecto OB*vecto AB=0

=>-2*căn 2/a+2=0 hoặc 2*căn 2/a+2=0

=>căn 2/a=1

=>a=2

 

a: \(B=\dfrac{x+\sqrt{x}-1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{1}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

b: \(B-\dfrac{1}{3}=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}\)

\(=\dfrac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{-\left(\sqrt{x}+1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

=>B<1/3

Cũng tương tự hai cách in trên, đầu tiên bạn cần mở hộp thoại Print. Sau đó thay vì chọn Print All Pages hay Print Current Page, bạn chọn Custom Print. Sau đó, bạn điền các trang cần in dưới hộp Pages

 

c: Ta có: \(\dfrac{\sqrt{x}-10}{\sqrt{x}+2}\ge-2\)

\(\Leftrightarrow\sqrt{x}-10+2\left(\sqrt{x}+2\right)\ge0\)

\(\Leftrightarrow3\sqrt{x}\ge6\)

hay \(x\ge4\)

14A

13D

12B

11A

10A

9B

7D

5D

7 tháng 3 2023

a/

b/ 

Tọa độ giao điểm của 2 đồ thị là:

\(\dfrac{1}{2}x^2=2x-2\\ \Leftrightarrow\dfrac{1}{2}x^2-2x+2=0\\ \Leftrightarrow x=2\)

7 tháng 3 2023

b) Phương trình hoành độ giao điểm của (P) và (d):

1/2 x² = 2x - 2

⇔x² = 4x - 4

⇔x² - 4x + 4 = 0

⇔(x - 2)² = 0

⇔x - 2 = 0

⇔x = 2

⇔y = 2.2 - 2 = 2

Vậy tọa độ giao điểm của (P) và (d) là (2;2)

Bài 9:

c) Ta có: \(P=\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}-1}\)

\(=a+\sqrt{a}+1\)

d) Ta có: \(Q=\dfrac{a\sqrt{a}+1}{\sqrt{a}+1}\)

\(=\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}+1}\)

\(=a-\sqrt{a}+1\)