K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

A = 3 + 32 + 33 + ... + 3120 (có 120 số; 120 chia hết cho 6)

A = (3 + 32 + 33 + 34 + 35 + 36) + (37 + 38 + 39 + 310 + 311 + 312) + ... + (3115 + 3116 + 3117 + 3118 + 3119 + 3120)

A = 3.(1 + 3 + 32 + 33 + 34 + 35) + 37.(1 + 3 + 32 + 33 + 34 + 35) + ... + 3115.(1 + 3 + 32 + 33 + 34 + 35)

A = 3.364 + 37.364 + ... + 3115.364

A = 364.(3 + 37 + ... + 3115)

A = 4.13.7.(3 + 37 + ... + 3115) chia hết cho 4 và 13

DD
13 tháng 10 2021

\(B=3+3^2+3^3+...+3^{120}\)

Dễ thấy \(B\)chia hết cho \(3\)do là tổng của các số hạng chia hết cho \(3\).

\(B=3+3^2+3^3+...+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{119}\right)⋮4\)

\(B=3+3^2+3^3+...+3^{120}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{118}\right)⋮13\)

DD
21 tháng 10 2021

a) \(B\)là tổng các số hạng chia hết cho \(3\)nên chia hết cho \(3\).

b) \(B=3+3^2+...+3^{120}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{119}\right)⋮4\)

c) \(B=3+3^2+...+3^{120}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)⋮13\)

5 tháng 11 2023

\(A=1+3^1+3^2+3^3+...+3^{2021}\\=(1+3^1)+(3^2+3^3)+(3^4+3^5)...+(3^{2020}+3^{2021})\\=4+3^2\cdot(1+3)+3^4\cdot(1+3)+...+3^{2020}\cdot(1+3)\\=4+3^2\cdot4+3^4\cdot4+...+3^{2020}\cdot4\\=4\cdot(1+3^2+3^4+...+3^{2020})\)

Vì \(4\cdot(1+3^2+3^4+...+3^{2020})\vdots4\)

nên \(A\vdots4\)

\(\text{#}Toru\)

5 tháng 11 2023

thank you bạn character debate nha, ai vô trả lời thì cảm ơn nhiều!!

 

4 tháng 11 2017

\(A=1+3+3^2+..........+3^{11}\)

\(\Leftrightarrow A=\left(1+3\right)+\left(3^2+3^3\right)+.........+\left(3^{10}+3^{11}\right)\)

\(\Leftrightarrow A=1\left(1+3\right)+3^2\left(1+3\right)+.........+3^{10}\left(1+3\right)\)

\(\Leftrightarrow A=1.4+3^2.4+.......+3^{10}.4\)

\(\Leftrightarrow A=4\left(1+3^2+..........+3^{10}\right)⋮4\left(đpcm\right)\)

4 tháng 11 2017

A = 1 + 3 + 32 + 33 + ... + 311

A = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 310 + 311 )

A = 4 + 32 . ( 1 + 3 ) + ... + 310 . ( 1 + 3 )

A = 4 + 32 . 4 + ... + 310 . 4

A = 4 . ( 1 + 32 + ... + 310 ) \(⋮\) 4 ( Vì trong tích có một thừa số chia hết cho 4 )

~ Chúc bạn học giỏi ! ~

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

16 tháng 10 2021

a: \(B=3+3^2+3^3+...+3^{120}\)

\(=3\left(1+3+3^2+...+3^{119}\right)⋮3\)

b: \(B=3+3^2+3^3+3^4+...+3^{2020}\)

\(=3\left(1+3\right)+...+3^{2019}\left(1+3\right)\)

\(=4\cdot\left(3+...+3^{2019}\right)⋮4\)

17 tháng 10 2021

undefined

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ \Rightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\\ \Rightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{97}\left(1+3+3^2\right)\\ \Rightarrow A=\left(1+3+3^2\right)\left(3+3^4+...+3^{97}\right)\\ \Rightarrow A=13\left(3+3^4+...+3^{97}\right)⋮13\)

25 tháng 12 2021

\(A=3+3^2+3^3+...+3^{99}\\ 3A-A=3^{99}-1\\ A=\dfrac{3^{99}-1}{2}\)