Tìm hai số dương. Biết tổng, hiệu, tích của chúng tỉ lệ với 35, 210,12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
Gọi hai số đó là : \(x\) và \(y\)
Theo đề bài , ta có :
\(35.\left(x+y\right)=210\left(x-y\right)=12\left(xy\right)\)
\(\Rightarrow35.\left(x+y\right)=210.\left(x-y\right)\) \(\left(1\right)\)
\(210.\left(x-y\right)=12\left(xy\right)\) \(\left(2\right)\)
Từ \(\left(1\right)\Rightarrow35x+35y=210x-210y\)
\(\Rightarrow35y+210y=210x-35x\)
\(\Rightarrow245y=175x\)
\(\Rightarrow x=\frac{\left(245y\right)}{175}=\frac{\left(7y\right)}{5}\) \(\left(3\right)\)
Thay vào \(\left(2\right)\) , ta được :
\(210.\left(x-y\right)=12\left(xy\right)\)
\(\Rightarrow210.\left[\frac{\left(7y\right)}{5-y}\right]=12.\left[\frac{7y}{5y}\right]\)
\(\Rightarrow210.\left[\frac{\left(2y\right)}{5}\right]=\left[\frac{\left(84y\right)}{5}\right].y\)
\(\Rightarrow\frac{\left(420y\right)}{5}=\frac{84y^2}{5}\)
\(\Rightarrow\left[\frac{\left(420y\right)}{5}\right]-\left[\frac{84y^2}{5}\right]=0\)
\(\Rightarrow\frac{\left[84.\left(5-y\right)\right]}{5}=0\)
\(\Rightarrow y=0\) ( vô lí )
\(\Rightarrow5-y=0\)
\(\Rightarrow y=5\)
Thay vào \(\left(3\right)\) , ta có :
\(x=\frac{\left(7y\right)}{5}=\frac{\left(7.5\right)}{5}=\frac{37}{5}=7\)
Vậy \(x=7;y=5\)
-Gọi hai số cần tìm là a,b
_Do tổng hiệu và tích ccuar chúng tỉ lệ nghịch với 35,210,12
=>35.(a+b)=210.(a-b)=12.(a.b)
=>35a+35b=210a-210b
=>35a-210a=-35b-210b
=>-175a=-245b =>a/b=-245/175=7/5
vậy a=7;b=5
Em tham khảo bài tại link dưới đây:
Câu hỏi của Hoàng Thị Minh Ngọc - Toán lớp 7 - Học toán với OnlineMath