Chứng minh bdt x-x^2 +1/x-x^2-1 <1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko rõ đề bài
\(y=\frac{3x}{2}+\frac{1}{x}+1\)hay \(y=\frac{3x}{2}+\frac{1}{x+1}\)
ĐK: \(0\le x\le1\)
\(VT=\sqrt{x\left(x+1\right)}+\sqrt{x\left(1-x\right)}\le\frac{x+x+1+x+1-x}{2}=\frac{2x+2}{2}=x+1\)
Dấu "=" ko xảy ra
\(x^2+x\sqrt{2}+1>0\)
\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
\(\Leftrightarrow\left(x+\frac{1}{\sqrt{2}}\right)^2>-\frac{1}{2}\)
=> đpcm
\(x^2+x\sqrt{2}+1=x^2+2.x.\frac{\sqrt{2}}{2}+\left(\frac{\sqrt{2}}{2}\right)^2+\frac{1}{2}=x^2+2.x.\frac{\sqrt{2}}{2}+\frac{1}{2}+\frac{1}{2}\)
\(=\left(x+\frac{\sqrt{2}}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(x+\frac{\sqrt{2}}{2}\right)^2\ge0\left(\forall x\right)\)
Suy ra: \(\left(x+\frac{\sqrt{2}}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}>0\)
Vậy \(x^2+x\sqrt{2}+1>0\)
\(y=\frac{3x}{2}+\frac{1}{x+1}=\frac{3\left(x+1\right)}{2}+\frac{1}{x+1}-\frac{3}{2}\)
\(\Rightarrow y\ge2\sqrt{\frac{3\left(x+1\right)}{2}.\frac{1}{x+1}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)
Dấu "=" khi \(\left(x+1\right)^2=\frac{2}{3}\Rightarrow x=\frac{\sqrt{6}}{3}-1\)
\(y=\frac{x}{3}+\frac{5}{2x-1}=\frac{2x}{6}+\frac{5}{2x-1}=\frac{2x-1}{6}+\frac{5}{2x-1}+\frac{1}{6}\)
\(\Rightarrow y\ge2\sqrt{\frac{2x-1}{6}.\frac{5}{2x-1}}+\frac{1}{6}=\frac{\sqrt{30}}{3}+\frac{1}{6}\)
\(\Rightarrow P_{min}=\frac{\sqrt{30}}{3}+\frac{1}{6}\)
Dấu "=" xảy ra khi \(\left(2x-1\right)^2=30\Rightarrow x=\frac{\sqrt{30}+1}{2}\)
Ta có: (x-x2+1)/(x-x2-1) - 1
= (x-x2+1)/(x-x2-1) - (x-x2-1)/(x-x2-1)
= (x-x2+1-x+x2+1)/(x-x2-1) = 2/(x-x2-1) = -2/(x2-x+1)
Ta có: x2-x+1 = x2-x+1/4+3/4 = (x - 1/2)2 + 3/4 > 0 với mọi x
Nên (x-x2+1)/(x-x2-1) < 1 (đpcm)