K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tự vẽ hình :

a, Có : \(\widehat{ACB}+\widehat{BCx}=180^0\)

\(=>\frac{1}{2}ACB+\frac{1}{2}BCx=90^0\)

\(=>DCB+BCE=90^0\)

\(=>DCE=90^0\)

Tương tự  \(\widehat{DBE}=90^0\)

Trong tứ giác \(BECD\)có : \(\widehat{DBE}+\widehat{DCE}=90^0+90^0=180^0\)

= > Tứ giác BECD nội tiếp 

b, Tứ giác BECD nội tiếp nên 

\(\widehat{DCB}=\widehat{DEB}\)( 2 góc nội tiếp cung chắn cung BD )

Xét \(\Delta DIC\)và \(\Delta BIE\)có :

\(\widehat{DCB}=\widehat{DEB}\left(cmt\right)\)

\(\widehat{DIC}=\widehat{BIE}\)( 2 góc đối đỉnh )

\(=>\Delta DIC~\Delta BIE\)

\(=>\frac{BI}{ID}=\frac{IE}{IC}\)

\(=>BI.IC=ID.IE\)

c, Vì E là giao điểm của 2 đường phân giác trong của góc B , C nên E cũng thuộc đường phân giác của góc A

= > AE là phân giác của góc A

Vì D là giao điểm của 2 đường phân giác các góc ngoài của góc B , C nên ta có D cách đều 2 cạnh AB , AC

= > D thuộc đường phân giác của góc A

= > A , E , D thẳng hàng 

a: BE,BD là hai tia phân giác của hai góc kề bù

=>BE vuông góc BD

CE,CD là hai tia phân giác của hai góc kề bù

=>CE vuông góc CD

Xét tứ giác EBDC có

góc EBD+góc ECD=180 độ

=>EBDC nội tiếp

b: Xét ΔIBE và ΔIDCcó

góc IBE=góc IDC

góc BIE=góc DIC

=>ΔIBE đồng dạng với ΔIDC

=>IB/ID=IE/IC

=>IB*IC=ID*IE

 

15 tháng 5 2022

tham khảo=)

undefined

15 tháng 5 2022

cop

7 tháng 5 2019

A B C D I M E x y

a)   Trong tam giác ABC cóE là giao điểm 2 phân giác trong góc B và C nên  AE là phân giác góc BAC

Khi đó AE và AD đều là phân giác trong của góc BAC

=> 3 điểm A,E,D thẳng hàng

b)   Có:       ACB+BCx   =180

           => 1/2 ACB  +1/2  BCx =90

           =>  DCB  +   BCE  =90

           =>  DCE                =90

Tương tự  : DBE    =90

Trong tứ giác  BECD   CÓ   DBE +DCE  =90+90=180 

=> TỨ giác BECD nội tiếp

c) theo câu b thì tứ giác BECD nội tiếp nên

  DCB =DEB ( 2 góc nội tiêp cung chắn cung BD)

Xét tam giác DIC và tam giác BIE có :

    DCB=DEB (cmt)

   DIC= BIE ( 2 góc đối đỉnh)

=> tam giác DIC đồng dạng với tam giác BIE

=>\(\frac{BI}{ID}\)=\(\frac{IE}{IC}\)

 => BI *IC= ID*IE

            

9 tháng 5 2019

mình ghi lại câu a nhé

Vì E là giao điểm của 2 đường phân giác trong của góc B,C nên E cũng thuộc đường phân giac của góc A 

=> AE là  phân giác góc A

Vì D  là giao điểm của 2 đường phân giác các góc ngoài của góc B,C nên ta có D cách đều 2 cạnh AB,AC

=> D thuộc đường phân giác góc A

=>AE,AD nhau

=> A,E,D thẳng hàng

23 tháng 3 2022

giúp e với ạ

a: góc ANE=1/2(sđ cung AE+sđ cung CD)

=1/2(sđ cung AE+sđ cung BD)

góc AIE=1/2(sđ cung AE+sđ cung BD)

=>góc ANE=góc AIE

=>AINE nội tiếp

góc BMD=1/2(sđ cung BD+sđ cung CE)

góc BID=1/2(sđ cung BD+sđ cung AE)

mà sđ cung CE=sđ cung AE

nên góc BMD=góc BID

=>BIMD nội tiếp

 

10 tháng 4 2022

chứng minh tứ giác OBDK nội tiếp:

dựa vào góc DBK=DOK (vì hai góc cùng chắn cung DK)

vậy, ta cần chứng minh DBK=DOK

đặt giao của OM với AB là H

dễ dàng chứng minh: DBK=BOA=1/2 BOC (1)

có M thuộc (O) và tiếp tuyến CD của M nên chứng minh được tam giác OBD=OMD (ch,cgv)

=> góc BOD=DOM và MOE=COE (chứng minh tương tự)

=> DOM+EOM=DOE=1/2BOM+1/2MOC=1/2BOC (2)

từ (1),(2) => DOK=KBD (đpcm)

20 tháng 12 2019

Câu hỏi của AFK_VMC MOBLE - Toán lớp 10 - Học toán với OnlineMath