cho tam giác abc vuông tại a với các cạnh góc vuông là ab=5cm ,ac=8cm
a)tính bc
b)tính góc b,góc c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: BK=BA+AK
BC=BE+EC
mà BA=BE và AK=EC
nên BK=BC
=>góc BKC=góc BCK
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔABM=ΔDCM
c: ΔABM=ΔDCM
=>góc ABM=góc DCM
=>DC//AB
=>DC vuông góc AC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Ta có: ΔBAC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
\(\widehat{EAM}=\widehat{FAM}\)
Do đó; ΔAEM=ΔAFM
Suy ra: ME=MF
hay ΔMEF cân tại M
c: BC=6cm nên BM=CM=3cm
=>AM=4cm
d: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a: Sửa đề: AC=12cm
Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
b:
Ta có: AB và AE là hai tia đối nhau
=>A nằm giữa B và E
mà AB=AE
nên A là trung điểm của BE
Xét ΔCBE có
CA là đường cao
CA là đường trung tuyến
Do đó: ΔCBE cân tại C
c: Ta có: ΔCBE cân tại C
mà CA là đường cao
nên CA là phân giác của góc ECB
Xét ΔCIA vuông tại I và ΔCHA vuông tại H có
CA chung
\(\widehat{ICA}=\widehat{HCA}\)
Do đó: ΔCIA=ΔCHA
d: Ta có: ΔCIA=ΔCHA
=>CI=CH
Xét ΔCEB có \(\dfrac{CI}{CE}=\dfrac{CH}{CB}\)
nên HI//EB