Cho tam giác
ABC vuông tại A, có AB = 8cm, AC = 6cm. Tia phân
giác của góc A cắt BC tại D.
a) Tính độ dài các đoạn thẳng BC, DB, DC.
a) Gọi E là hình chiếu của D trên AC. Tính DE, EC
c) Gọi F là hình chiếu của D trên AB. Chứng minh
BF.AC = DE.AB
GIÚP E VS AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
BC2=AB2+AC2BC2=AB2+AC2
⇔BC2=62+82=100⇔BC2=62+82=100
hay BC=10(cm)
Vậy: BC=10cm
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
a: Xét ΔABC có AD là phân giác
nên BD/CD=AB/AC=3/4
BC=10cm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó: BD=30/7(cm); CD=40/7(cm)
b: Xét ΔABC có DE//AC
nên DE/AC=BD/BC
=>DE/8=3/7
hay DE=24/7(cm)
a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{DB}{DC}=\dfrac{6}{8}=\dfrac{3}{4}\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=21^2+28^2=1225\)
hay BC=35(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{BD}{21}=\dfrac{CD}{28}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{21}=\dfrac{CD}{28}=\dfrac{BD+CD}{21+28}=\dfrac{BC}{49}=\dfrac{35}{49}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{21}=\dfrac{5}{7}\\\dfrac{CD}{28}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=15\left(cm\right)\\CD=20\left(cm\right)\end{matrix}\right.\)
Vậy: BD=15cm; CD=20cm
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>\(BC=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)
=>\(\dfrac{DB}{4}=\dfrac{DC}{3}\)
mà DB+DC=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{DB}{4}=\dfrac{DC}{3}=\dfrac{DB+DC}{4+3}=\dfrac{10}{7}\)
=>\(DB=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\left(cm\right);DC=3\cdot\dfrac{10}{7}=\dfrac{30}{7}\left(cm\right)\)
b: Ta có: DE\(\perp\)AB
AC\(\perp\)AB
Do đó: DE//AC
Xét ΔABC có DE//AC
nên \(\dfrac{DE}{AC}=\dfrac{BD}{BC}\)
=>\(\dfrac{DE}{6}=\dfrac{40}{7}:10=\dfrac{4}{7}\)
=>DE=24/7(cm)
Ta có: \(\widehat{EDA}=\widehat{DAC}\)(hai góc so le trong, ED//AC)
\(\widehat{DAC}=\widehat{DAE}\)
Do đó: \(\widehat{EDA}=\widehat{EAD}\)
=>EA=ED=24/7(cm)
ΔAEC vuông tại A
=>\(AE^2+AC^2=EC^2\)
=>\(EC^2=\left(\dfrac{24}{7}\right)^2+6^2=\dfrac{2340}{49}\)
=>\(EC=\dfrac{6\sqrt{65}}{7}\left(cm\right)\)