K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

A= 4x2y2 - (x2 + y2 - z2 )2

= (2xy - x2 - y2 + z2)(2xy + x2 + y2 - z2)

=[ z2-(x-y)2].[ (x+y)2-z2 ]

=(z-x+y)(z+x-y)(x+y-z)(z+y+z)

x,y,z là độ dài 3 cạnh của 1 tam giác=>x>0,y>0,x>0

áp dụng bất đẳng thức của tam giác

ta có:

z-x+y>0

z+x-y>0

x+y-z>0

x+y+z>0

=> tích (z-x+y)(z+x-y)(x+y-z)(x+y+z) >0

=> A>0

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$

Mà:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$

$=(-z)^3-3xy(-z)+z^3=3xyz$

Và:

\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)

\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)

\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)

Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)

\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)

Ta có đpcm.

 

 

27 tháng 1 2017

T thêm điều kiện nữa là x, y, z nguyên nhé

Ta có: 2x2 + 3y2 + 2z2 – 4xy + 2xz – 20 = 0 (1) Vì x, y, z €N* nên từ (1) suy ra y là số chẵn

Đặt y = 2k (k €N*),

Thay vào (1):

2x2 + 12k2 + 2z2 – 8xk + 2xz – 20 = 0 

<=> x2 + 6k2 + z2 – 4xk + xz – 10 = 0 

<=> x2 – x(4k – z) + (6k2 + z2 – 10) = 0 (2)

Xem (2) là phương trình bậc hai theo ẩn x.

Ta có: ∆ = (4k – z)2 – 4(6k2 + z2 – 10)

= 16k2 – 8kz + z2 – 24k2 – 4z2 + 40

= - 8k2 – 8kz – 3z2 + 40

Nếu k \(\ge\)2, thì do z \(\ge\)1 suy ra  < 0

=> phương trình (2) vô nghiệm. Do đó k = 1,

=> y = 2. Thay k = 1 vào ∆= - 8 – 8z – 3z2 + 40 = - 3z2 – 8z + 32

Nếu z \(\ge\)3 thì ∆ < 0: phương trình (2) vô nghiệm.

Do đó z = 1, hoặc 2.

Nếu z = 1 thì ∆ = - 3 – 8 + 32 = 21: không chính phương, suy ra phương trình (2) không có nghiệm nguyên.

Do đó z = 2. Thay z = 2, k = 1 vào phương trình (2)

x2 – 2x + (6 + 4 – 10) = 0 

<=> x2 – 2x = 0 

<=> x(x – 2) = 0 

x = 2 (x > 0)

Suy ra x = y = z = 2. Vậy tam giác đã cho là tam giác đều.

25 tháng 8 2023

Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))