\(\frac{63}{31}\); \(\frac{158}{51}\) ; \(\frac{43}{21}\) ; \(\frac{58}{41}\)
sắp sếp các phân số sau theo thứ tự giảm dần ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(X-\left(\frac{31}{5}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\right)=\frac{9}{13}\)
\(X-\left(\frac{31}{5}+\frac{31}{3\cdot5}+\frac{31}{5\cdot7}+\frac{31}{7\cdot9}+\frac{31}{9\cdot11}+\frac{31}{11\cdot13}\right)=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\left(\frac{1}{3}-\frac{1}{13}\right)+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\left[\frac{31}{2}\cdot\frac{10}{39}+\frac{31}{5}\right]=\frac{9}{13}\)
\(X-\frac{1984}{195}=\frac{9}{13}\)
\(\Rightarrow X=\frac{9}{13}+\frac{1984}{195}=\frac{163}{15}\)
\(\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}=\frac{31}{1.3}+\frac{31}{3.5}+\frac{31}{5.7}+\frac{31}{7.9}+\frac{31}{9.11}+\frac{31}{11.13}\\ \)
\(=\frac{31}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(=\frac{31}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=\frac{31}{2}.\left(1-\frac{1}{13}\right)=\frac{31}{2}.\frac{12}{13}=\frac{31.6}{13}=\frac{186}{13}\)
\(\Rightarrow x-\frac{186}{13}=\frac{9}{13}\Leftrightarrow x=\frac{195}{13}=15\)
\(x-\left(\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\right)=\)\(\frac{9}{13}\)(1)
Đặt \(A=\frac{31}{3}+\frac{31}{15}+\frac{31}{35}+\frac{31}{63}+\frac{31}{99}+\frac{31}{143}\)
\(A=31\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\right)\)
\(\Rightarrow2A=31\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(2A=31\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(2A=31\left(2-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(2A=31\left(2-\frac{1}{13}\right)\)
\(2A=31.\frac{25}{13}\)
\(2A=\frac{775}{13}\)
\(\Rightarrow A=\frac{775}{13}:2\)
\(A=\frac{775}{26}\)
Thay vào (1) ta có:
\(x-\frac{775}{26}=\frac{9}{13}\)
\(\Leftrightarrow x=\frac{9}{13}+\frac{775}{26}\)
\(\Leftrightarrow x=\frac{61}{2}\)
\(\frac{-63}{108}\)= \(\frac{-7}{12}\)
\(\frac{-33}{-77}\)= \(\frac{3}{7}\)
\(\frac{-5}{10}\)=\(\frac{-1}{2}\)
\(\frac{14}{63}\)=\(\frac{2}{9}\)
\(\frac{-15}{25}\)=\(\frac{-3}{5}\)
\(\frac{-45}{18}\)=\(\frac{-5}{2}\)
\(\frac{12}{15}\)=\(\frac{4}{5}\)
\(\frac{20}{25}\)=\(\frac{4}{5}\)
\(\frac{31}{12}\):Là phân số tối giản
t.i.c.k nha
\(D=\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+\frac{15}{2^4}+\frac{31}{2^5}+\frac{63}{2^6}=\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\frac{31}{32}+\frac{63}{64}\)\(=\frac{1}{2}+\left(1-\frac{1}{4}+1-\frac{1}{8}+1-\frac{1}{16}+1-\frac{1}{32}+1-\frac{1}{64}\right)=\frac{1}{2}+5-\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)đến đấy thôi
\(\Rightarrow\left(\frac{\frac{31}{36}}{\frac{11}{9}:4-\frac{3}{4}}:31\right).x=\frac{-1}{16}\Rightarrow\left(\frac{\frac{31}{36}}{\frac{-4}{9}}:31\right)x=-\frac{1}{16}\Rightarrow\left(-\frac{31}{16}:31\right)x=-\frac{1}{16}\Rightarrow-\frac{1}{16}x=-\frac{1}{16}\Rightarrow x=1\)
Mình nghĩ ra câu a rồi!
Ta có: 58/63 > 54/63=6/7
Mà 6/7=36/42 > 36/55
Vậy 58/63 > 36/55.
Mình làm câu b trước nha!
31/41 = 310/410
Ta có: 310/410 = 1-100/410 ; 313/413 = 1-100/413
Ta thấy: 100/410 > 100/413 => 1-100/410 < 1-100/413
Vậy 31/41 < 313/413.
158/51 > 43/21 > 63/31 > 58/41
Ủng hộ mik nhen
Các phân số theo tt giảm dần là:
\(\frac{158}{51};\frac{43}{21};\frac{63}{31};\frac{58}{41}\)