Cho a+b = 10 và a.b = 24 . Tình A= a^3+b^3-80
Giúp mình với ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)
1) a + b = - 12 và ab = 20
a; b là nghiệm của phương trình: \(X^2-\left(-12\right)X+20=0\)
hay \(X^2+12X+20=0\)
Giải delta tìm được nghiệm: \(X=-2\) hoặc \(X=-10\)
Vậy hai số ( a; b ) = ( -2; -10) hoặc ( a; b ) = ( -10 ; -2)
Các bài còn lại đưa về tổng và tích rồi làm như câu 1.
a) \(\hept{\begin{cases}a+b=-12\\a.b=20\end{cases}\Leftrightarrow\hept{\begin{cases}a=-b-12\\\left(-b-12\right).b=20\end{cases}}}\)
\(\hept{\begin{cases}a=-b-12\\b^2+12b+20=0\end{cases}\Rightarrow\hept{\begin{cases}b=-2;a=-10\\b=-10;a=-2\end{cases}}}\)
b) \(\hept{\begin{cases}a^2+b^2=25\\ab=24\end{cases}\Leftrightarrow\hept{\begin{cases}a^2+b^2=25\\2ab=48\end{cases}}}\)
=> \(a^2+b^2-2ab=-23\)\(\Leftrightarrow\left(a-b\right)^2=-23\)(vô lý)
=> Hệ vô nghiệm
2 ý còn lại tương tự nha bn ơi
A) Ta có a + b = 10
=> (a + b)2 = 102
=> a2 + b2 + 2ab = 100
=> a2 + b2 + 8 = 100
=> a2 + b2 = 92
Vậy A = a2 + b2 = 92
b) Ta có a + b = 10
=> (a + b)3 = 103
=> a3 + b3 + 3a2b + 3ab2 = 1000
=> a3 + b3 + 3ab(a + b) = 1000
=> a3 + b3 + 3.4.10 = 1000
=> a3 + b3 + 120 = 1000
=> a3 + b3 = 880
Vậy B = a3 + b3 = 880
Đưa biểu thức về hđt nhé
a, Ta có : \(\left(a+b\right)^2=10^2\Leftrightarrow a^2+b^2+2ab=100\)
\(\Leftrightarrow a^2+b^2+8=100\Leftrightarrow a^2+b^2=92\)
b, Ta có : \(\left(a+b\right)^3=10^3\Leftrightarrow a^3+b^3+3a^2b+3ab^2=1000\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=1000\)
\(\Leftrightarrow a^3+b^3+12.10=1000\Leftrightarrow a^3+b^3=880\)
\(A=a^3-b^3-84\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-84\)
\(=\left(a-b\right)\left\{\left(a-b\right)^2+3ab\right\}\)
\(=6.\left[6^2+3.9\right]=6.63=379\)
\(Ủng\)hộ nhak
a3 +b3 = (a+b)(a2 -ab + b2) = 3(a2 +b2 - (-10)) (1)
mà a2 + b2 = (a+b)2 - 2ab = 32 + 2.10 = 29 (2)
thay(1) vảo (2) có: A = 3(29+10) = 127
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
Từ bài toán, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) và \(a+b+c=24\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{24}{12}=2\)
Suy ra:
\(a=2\cdot3=6\)
\(b=2\cdot4=8\)
\(c=3\cdot5=15\)