Nghiệm của phương trình:
(2x-3)2-4x2-297=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét hàm trên
Phương trình đã cho có bốn nghiệm phân biệt khi và chỉ khi phương trình (*) có hai nghiệm phân biệt lớn hơn 1 và khác
Chọn A.
Δ=(2m-1)^2-4*2*(m-1)
=4m^2-4m+1-8m+8
=4m^2-12m+9=(2m-3)^2>=0
=>PT luôn có 2 nghiệm
4x1^2+4x2^2+2x1x2=0
=>4[(x1+x2)^2-2x1x2]+m-1=0
=>4[(-2m+1)^2/4-2*(m-1)/2]+m-1=0
=>(2m-1)^2-4(m-1)+m-1=0
=>4m^2-4m+1-3m+3=0
=>4m^2-7m+4=0
=>\(m\in\varnothing\)
Phương trình 4x2 + 2x – 5 = 0
Có a = 4; b = 2; c = -5, a.c < 0
⇒ Phương trình có hai nghiệm x1; x2
Theo hệ thức Vi-et ta có:
a) Phương trình 4 x 2 + 2 x − 5 = 0
Có a = 4; b = 2; c = -5, a.c < 0
⇒ Phương trình có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-et ta có:
b) Phương trình . 9 x 2 − 12 x + 4 = 0
Có a = 9; b' = -6; c = 4 ⇒ Δ 2 = ( - 6 ) 2 - 4 . 9 = 0
⇒ Phương trình có nghiệm kép x 1 = x 2 .
Theo hệ thức Vi-et ta có:
c) Phương trình 5 x 2 + x + 2 = 0
Có a = 5; b = 1; c = 2 ⇒ Δ = 1 2 − 4.2.5 = − 39 < 0
⇒ Phương trình vô nghiệm.
d) Phương trình 159 x 2 − 2 x − 1 = 0
Có a = 159; b = -2; c = -1; a.c < 0
⇒ Phương trình có hai nghiệm phân biệt x 1 ; x 2 .
Theo hệ thức Vi-et ta có:
A=(x1-x2)^2-x1^2+x1(x1+x2)
=(x1-x2)^2+x1x2
=(x1+x2)^2-x1x2
=(1/2)^2-(-1/4)=1/4+1/4=1/2
Đáp án B
Ta có bảng biến thiên
Phương trình (1) có bốn nghiệm phân biệt
⇔ * có hai nghiệm phân biệt lớn hơn 1
Mà m nguyên và m ∈ − 2019 ; 2019 nên ta có m ∈ 3 ; 4 ; ... ; 2018 .
Vậy có 2016 giá trị m thỏa mãn bài toán.
\(\left(2x-3\right)^2-4x^2-297=0\)
\(\Rightarrow\left(2x-3-2x\right)\left(2x-3+2x\right)=297\)
\(\Rightarrow-3\left(4x-3\right)=297\)
\(\Rightarrow4x-3=-99\)
\(\Rightarrow x=-24\)
=4x2 -12x +9 -4x2 - 297 =0
-12x -288=0
x = 288/12= 24
x = 24