Cho tam giác ABC đường cao AH. M,N là hình chiếu vuông góc của H trên AB,AC. C/m:
a) AM.AB= AN.AC
b) HB.HC= MA.MB+NA.NC
c) \(\frac{MB}{NC}\)= \(\left(\frac{BA}{AC}\right)^3\)
d) AH\(^3\)= BC.BM.CN
giúp tớ vs !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
b: Xét ΔHAB vuông tại H có HM là đường cao
nên MA*MB=HM^2
ΔHAC vuông tại H có HN là đường cao
nên NA*NC=HN^2
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>AH=MN
=>MN^2=AH^2=HB*HC
=>HB*HC=MA*MB+NA*NC
a) AM.AB = AN.AC
△AHB vuông tại H, đường cao HM, △AHC vuông tại H, đường cao HN
⇒AM.AB = AN.AC = AH^2 (hệ thức về cạnh và đường cao...)
b) HB.HC = MA.MB + NA.NC
- Tam giác ABC vuông tại A, đường cao AH
suy ra HB.HC = AH^2 (hệ thức về cạnh và đường cao...)
mà tứ giác AMHN là hcn, suy ra AH(^2) = MN(^2)
- △AHB vuông tại H, đường cao HM, △AHC vuông tại H, đường cao HN
suy ra MA.MB + NA.NC = HM(^2) + (HN^2)= (MN^2)
từ đó suy ra điều phải c/m
c) (HB/HC)=((AB/AC))(^2)
((AB/AC))(^2)=((AB^2)/AC(^2)) = (BH.BC/CH.BC)=(HB/HC)
a: Xét ΔAHB vuông tại H cso HM là đường cao
nên \(AM\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HN là đường cao
nên \(AN\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
c: \(\left(\dfrac{AB}{AC}\right)^2=\dfrac{AB^2}{AC^2}=\dfrac{HB\cdot BC}{HC\cdot BC}=\dfrac{HB}{HC}\)
b: \(MA\cdot MB+NA\cdot NC\)
\(=MH^2+NH^2=AH^2\)
Bài 2:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HM là đường cao ứng với cạnh huyền AB,ta được:
\(AM\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HN là đường cao ứng với cạnh huyền AC, ta được:
\(AN\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)
b) Xét tứ giác AMHN có
\(\widehat{NAM}=90^0\)
\(\widehat{ANH}=90^0\)
\(\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Suy ra: AH=MN
Ta có: \(AM\cdot AB+AN\cdot AC\)
\(=AH^2+AH^2\)
\(=2AH^2=2\cdot MN^2\)
a/
Xét tg vuông ABH
\(AH^2=AM.AB\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông ACH có
\(AH^2=AN.AC\) (lý do như trên)
\(\Rightarrow AM.AB=AN.AC\)
b/
\(AN\perp AB;MH\perp AB\) => AN//MH
\(AM\perp AC;NH\perp AC\) => AM//NH
=> AMHN là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Mặt khác \(\widehat{A}=90^o\)
=> AMHN là HCN => AM=NH; AN=MH (cạnh đối HCN)
Xét tg vuông ABH và tg vuông ACH có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) )
=> tg ABH đồng dạng với tg ACH
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{S_{ABH}}{S_{ACH}}\) (hai tg đồng dạng, tỷ số 2 diện tích bằng bình phương tỷ số đồng dạng)
\(\Rightarrow\left(\dfrac{AB}{AC}\right)^2=\dfrac{\dfrac{1}{2}.AB.MH}{\dfrac{1}{2}.AC.NH}\Rightarrow\dfrac{AB}{AC}=\dfrac{MH}{NH}\) lập phương 2 vế
\(\dfrac{AB^3}{AC^3}=\dfrac{MH^2.MH}{NH^2.NH}\) (1)
Xét tg vuông ABH
\(MH^2=BM.AM\) (trong tg vuông bình phương đường cao hạ tử đỉnh góc vuông bằng tích giữa hai hình chiếu của 2 cạnh góc vuông trên cạnh huyền) (2)
Xét tg vuông ACH, c/m tương tự
\(NH^2=CN.AN\) (3)
Thay (2) và (3) vào (1)
(1) \(\Leftrightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM.AM.MH}{CN.AN.NH}\)
Mà AM = NH; AN = MH (cmt)
\(\Rightarrow\dfrac{AB^3}{AC^3}=\dfrac{BM}{CN}\)
Lời giải:
Áp dụng HTL trong tam giác vuông với tam giác $AHB, AHC$:
$AM.AB=AH^2$
$AN.AC=AH^2$
Do đó nếu muốn cm $AM.AB=AB^2-AN.AC$ thì:
$AH^2=AB^2-AH^2$
$\Leftrightarrow 2AH^2=AB^2$
Cái này thì không có cơ sở để cm. Bạn coi lại đề.