Câu 1 : Khi chia hai số tự nhiên a và b cho 3 thì cùng có số dư là r. Chứng minh rằng (a - b) chia hết cho 3.
Câu 2 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 7 thì có số dư là 5. Chứng minh rằng (a - b) chia hết cho 7.
Câu 3 : Cho hai số tự nhiên a và b. Khi chia a,b cho cùng số 2 thì có số dư là 1. Chứng minh rằng (a - b) chia hết cho 2
"Các bạn có thể giải 1 trong 3 câu hoặc giải tất cả tùy các bạn !!! Ai nhanh mk tik cho !!"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hơi khó nha! @@@
â) Gọi số thứ nhất là x, số thứ 2 là y, thương của phép chia 1 là m, thương của phép chia 2 là n, số dư của 2 phép chia đó là a. Theo đề bài, ta có:
\(x:5=m\)(dư a)
\(y:5=n\)(dư a)
\(x-y⋮5\)
Ta có:
\(5.5=5+5+5+5+5\)
\(5.4=5+5+5+5\)
=> Khoảng cách giữa mỗi tích là 5.
Vậy tích 1 + 5 = tích 2
=> tích 1 (dư a) + 5 = tích 2 (dư a)
Mà:
5 = tích 2 (dư a) - tích 1 (dư a)
5 = tích 2 - tích 1 (a biến mất do a - a = 0 (Một số bất kì trừ chính nó = 0))
tích 2 - tích 1 = 5
Không có thời gian làm câu b sorry bạn nhé!
Mình sẽ làm sau!
Gọi a = k1 . 3 + r
b = k2 . 3 + r
Xét a - b, ta có: a - b = ( k1 . 3 + r) - (k2 . 3 + r)
a - b = k1 . 3 + r - k2 . 3 - r
a - b = k1 . 3 - k2 . 3
a - b = 3 . ( k1 - k2)
Suy ra a - b chia hết cho 3 (đpcm)
2.Gọi UCLN của 7n+10 và 5n+7 là d 7n+10 chia hết cho d
=> 5(7n+10) chia hết cho d hay 35n+50 chia hết cho d 5n+7 chia hết cho d
=> 7(5n+7) chia hết cho d
hay 35n+49 chia hết cho d
(35n+50)-(35n+49) chia hết cho d
35n+50-35n-49 chia hết cho d
(35n-35n)+(50-49) chia hết cho d
0+1 chia hết cho d 1
chia hết cho d => d=1
Vì UCLN của 7n+10 và 5n+7 =1 =>7n+10 và 5n+7 là hai số nguyên tố cùng nhau
5.Gọi a là số tự nhiên cần tìm (99 < a < 1000)
Ta có a chia 25 dư 5 => a + 20 chia hết cho 25
a chia 28 dư 8 => a + 20 chia hết cho 28
a chia 35 dư 15 => a + 20 chia hết cho 35
=> a + 20 thuộc BC(25;28;35) = B(700) = {0;700;1400;...}
Mà 119 < (a + 20) < 1020
Nên a + 20 = 700
=> a = 680
Vậy số tự nhiên cần tìm là 680
a và b chia cho 2 có cùng số dư là 1 nên a = 2m + 1 ; b = 2n + 1 (m,n thuộc N)
Ta có :
a - b = (2m + 1) - (2n + 1) = 2m - 2n = 2.(m - n) chia hết cho 2
a;b đều chia 3 dư r nên a=3k+r ; b=3q+r ( k;q thuộc N )
=> a-b = 3k+r-3q-r = 3k-3q = 3.(k-q) chia hết cho 3
=> ĐPCM
k mk nha
Gọi x là thương của phép chia a:3
Gọi y là thương của phép chia b:3
Ta có:
3x+r=a
Và: 3y+r=b
=> a-b=3x+r-(3y+r)=3x+r-3y-r=3x-3y=3(x-y)
=> a-b=3.(x-y) Luôn chia hết cho 3 => đpcm
a,b chia 2 đều dư 1 nên có a = 2x + 1 ; b = 2y + 1 (x,y\(\in N\)).Ta có :
a - b = (2x + 1) - (2y + 1) = 2x + 1 - 2y - 1 = (2x - 2y) + (1 - 1) = 2(x - y) chia hết cho 2 (đpcm)
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
ủng hộ mik nha