K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

hình bạn tự vé nhé.

tam giác ABC vuông tại A nên theo định lý PY-Ta-Go ta có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow6^2+8^2=BC^2\)

\(\Rightarrow BC=10\left(DO-BC>0\right)\)

b) xét \(\Delta ABC\) VÀ  \(\Delta HBA\) CÓ:

\(\widehat{BAC}=\widehat{AHB}\)

\(\widehat{B}\) CHUNG

\(\Rightarrow\Delta ABC\) đồng dạng vs  \(\Delta HBA\)

c)sửa đề:\(AB^2=BH.BC\)

TA CÓ: \(\Delta ABC\text{ᔕ}\Delta HBA\)

\(\Rightarrow\frac{AB}{BH}=\frac{BC}{AB}\left(tsđd\right)\)

\(\Rightarrow AH^2=BH.BC\)

18 tháng 9 2017

???????????

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in BC : BD = BA.

 DK ⊥ BC (K \in AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

25 tháng 3 2023

a)xét ΔABC và ΔHBA ta có

\(\widehat{BAH}=\widehat{BHA}=90^o\)

\(\widehat{B}chung\)

=>ΔABC ∼ ΔHBA(g.g)(1)

b)xét ΔABC và ΔAHC ta có

\(\widehat{BAC}=\widehat{AHC}=90^o\)

\(\widehat{B}chung\)

->ΔABC ∼ ΔAHC(g.g)(2)

từ (1) và (2)=>ΔHBA và ΔAHC

->\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\)

=>\(AH^2=BH.HC\)

25 tháng 3 2023

loading...  loading...    

 

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
29 tháng 6 2016

tứ giác ABCD là hình thang

Tứ giác ABCD là hình thang vuông

T nha 

Ai T mik mik T lại

10 tháng 2 2019

Bài giải: Ta có: AB/AC = 8/15 => AB/8 = AC/15

Áp dụng định lí Pi-ta-go vào t/giác ABC , ta có:

      BC2 = AB2 + AC2 

=> 512 = AB2 + AC2 

=> 2601 = AB2 + AC2

Áp dụng t/c của dãy tỉ số bằng nhau

Từ \(\frac{AB}{8}=\frac{AC}{15}\)=> \(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)

=> \(\hept{\begin{cases}\frac{AB^2}{64}=9\\\frac{AC^2}{225}=9\end{cases}}\)=> \(\hept{\begin{cases}AB^2=9.64=576\\AC^2=9.225=2025\end{cases}}\)=> \(\hept{\begin{cases}AB=24\\AC=45\end{cases}}\)

Vậy ...

b) tự lm

10 tháng 2 2019

\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)

\(\Leftrightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC}{15}\right)^2=\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)

\(\Rightarrow+)\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)

        \(+)\frac{AC^2}{225}=9\Rightarrow25\left(cm\right)\)