cho a,b thuộc n* biết a>2,b>2
chứng minh :a+b<a*b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=1a^2+1b^2+1c^2+\dfrac{2}{ab}+\dfrac{2}{bc}+\dfrac{2}{ac}\)
\(=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)
\(=2^2=2=2+2.\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)\)
\(=\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\)
\(=\dfrac{c}{abc}+\dfrac{a}{abc}+\dfrac{b}{abc}=\dfrac{abc}{abc}\)
\(=a+b+c\)
\(=abc\)
\(\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2=4\\ \Rightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow2+2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=4\\ \Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=1\\ \Rightarrow\dfrac{a+b+c}{abc}=1\\ \Rightarrow a+b+c=abc\left(dpcm\right)\)
\(A=\frac{10^{4030}-1}{9};B=\frac{2.\left(10^{2015}-1\right)}{9}\)
\(A-B=\frac{10^{4030}}{9}-\frac{1}{9}-\frac{2.10^{2015}}{9}+\frac{2}{9}=\)
\(=\left(\frac{10^{2015}}{3}\right)^2-2.\frac{10^{2015}}{3}.\frac{1}{3}+\left(\frac{1}{3}\right)^2=\left(\frac{10^{2015}}{3}-\frac{1}{3}\right)^2\) là 1 số chính phương
a > 2 = > a - 2 > 0
b > 2 = > b - 2 > 0
=> (a - 2)(b - 2) > 0
=> ab - 2a - 2b + 4 > 0
=> ab + 4 - 2(a + b) > 0
a > 2; b > 2
=> ab > 2.2 = 4
=> ab + ab > ab + 4 > 2(a + b)
=> 2ab > 2(a + b)
=> ab > a + b
vậy đề bài có vấn đề :v
a > 2 = > a - 2 > 0
b > 2 = > b - 2 > 0
=> (a - 2)(b - 2) > 0
=> ab - 2a - 2b + 4 > 0
=> ab + 4 - 2(a + b) > 0
a > 2; b > 2
=> ab > 2.2 = 4
=> ab + ab > ab + 4 > 2(a + b)
=> 2ab > 2(a + b)
=> ab > a + b. (Đpcm)
+ Nếu a < b thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
+ Nếu a = b thì a + b = b + b
=> a + b = 2.b < a.b (vì a > 2)
+ Nếu b > a thì a + b < b + b
=> a + b < 2.b < a.b (vì a > 2)
Vậy với a > 2; b > 2 thì a + b < a.b (đpcm)
Nếu muốn a.b < a + b thì a b nhân nhau phải có a hoặc b bằng 1:
a. 1 = a, b. 1 = b
Nhưng a > 2, b > 2.
Nên không có trường hợp 1 nêu trên xảy ra.
Vậy:
=> a + b < a.b nếu a > 2 ; b > 2
a, Giả sử 10a + b \(⋮\) 17 (1)
Vì 3a + 2b \(⋮\) 17 nên 8(3a + 2b) \(⋮\) 17
=> 24a + 16b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (24a + 16b) \(⋮\) 17
=> 10a + b + 24a + 16b \(⋮\) 17
=> (10a + 24a) + (16b + b) \(⋮\) 17
=> 34a + 17b \(⋮\) 17
=> 17(2a + b) \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\)17 (đpcm)
b, Giả sử 10a + b \(⋮\) 17 (1)
Vì a - 5b \(⋮\) 17 nên 7(a - 5b) \(⋮\) 17
=> 7a - 35b \(⋮\) 17 (2)
Từ (1) và (2) suy ra (10a + b) + (7a - 35b) \(⋮\) 17
=> 10a + b + 7a - 35b \(⋮\) 17
=> (10a + 7a) + (b - 35b) \(⋮\) 17
=> 17a + (-34b) \(⋮\) 17
=> 17.[a + (-2)b] \(⋮\) 17
=> Giả sử đúng
Vậy 10a + b \(⋮\) 17 (đpcm)