tìm x,y thuộc Z thỏa
/x+3/+/y-1/ <0 hoặc =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để y là số nguyên thì \(x+1\inƯ\left(3\right)\)
\(\Leftrightarrow x+1\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{0;-2;2;-4\right\}\)
\(\left(x-3\right)\left(y+1\right)=7\)
\(\Rightarrow x-3;y+1\) là Ước của 7
Mà \(Ư\left(7\right)=\left\{1;7;-1;-7\right\}\)
Ta có bảng :
x-3 | 1 | 7 | -1 | -7 |
y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x,y\right)\in\left\{\left(4;6\right),\left(10;0\right),\left(2;-8\right),\left(-4;-2\right)\right\}\)
y=x+z-a (a=2016)
y^3=(x+z)^3-a^3-3(x+z).a(x+z-a)
-y^3=-[x^3+z^3+3xz(x+z)-a^3-3(x+z).a(x+z-a)]
-3(x+z)[xz-ay]+2016^3=2017^2
2017 không chia hết cho 3 vô nghiệm nguyên
Bạn test lại xem hay biến đổi nhầm nhỉ
Bị lừa rồi.
thực ra rất đơn giản
\(x-y+z=2016\)(1)
\(x^3-y^3+z^3=2017^2\)(2)
(1) số số hạng lẻ phải chắn=> tất cả chẵn (*) hoạc 1 số chẵn(**)
(2) số số hạng lẻ phải lẻ=> vô nghiệm nguyên