CMR với mọi số thực k thì 2016k+3 không phải là lập phương của một số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 2016k + 3 = a3 với k và a là số nguyên.
Suy ra: 2016k = a3 – 3
Ta thấy 2016k 7
Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3
Thật vậy: Ta biểu diễn a = 7m + r, với r .
Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.
Mà 2016k luôn chia hết cho 7,
nên a3 – 3 2016k.
Bài toán được chứng minh
Lời giải:
Ta sẽ chứng minh , một số lập phương khi chia $7$ chỉ có thể có dư là \(0,1,6\)
Thật vậy: Xét số \(a^3\), có các TH sau:
+) \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)
+) \(a\equiv \pm 1\pmod 7\Rightarrow a^3\equiv \pm 1\pmod 7\)
\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)
+) \(a\equiv \pm 2\pmod 7\Rightarrow a^3\equiv \pm 8\pmod 7\)
\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)
+) \(a\equiv \pm 3\pmod 7\Rightarrow a^3\equiv \pm 27\pmod 7\)
\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)
Do đó, \(a^3\equiv 0,1,6\pmod 7\) (đpcm)
Mà \(2016k+3=7.288k+3\equiv 3\pmod 7\)
Cho nên , \(2016k+3\) không thể là lập phương của một số nguyên.
Giả sử 2016k + 3 = a3 với k và a là số nguyên.
Suy ra: 2016k = a3 – 3
Ta thấy 2016k 7
Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3
Thật vậy: Ta biểu diễn a = 7m + r, với r .
Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.
Mà 2016k luôn chia hết cho 7,
nên a3 – 3 2016k.
Bài toán được chứng minh
huhu Bo đang học toán ☠️☠️☠️