Biết x,y,z là nghiệm của pt : \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\). Tổng của \(x^2+y^2+z^2\)bằng bao nhiêu?
chỉ dùm mình cách làm với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1=0\)
\(\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
x =1
y= 2
z =3
S= 12+22+32= 14
Biết x; y; z là nghiệm của \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\)
Vậy \(S=x^2+y^2+z^2=?\)
x;y;z là nghiệm của PT: \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\left(1\right)\)=> đk: x >=0; y >= 1 ; z >= 2.
Ta có:
Vậy để (1) thỏa mãn thì dấu "=" xảy ra hay các BĐT (a); (b); (c) xảy ra. Khi đó, x = 1; y = 2; z = 3.
b, Gọi biểu thức đề ra là B
=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)
=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\)
( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )
=> Min B=6
Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)
\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)
\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)
=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)
Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1
=> \(x=y=z=\frac{1}{3}\)
Vậy ...
Bài 1 bạn nhân \(\left(b-\sqrt{b^2+2017}\right)\)sau đó nó tạo thành hăng đẳng thức,sau đó tiếp tục nhân liên hợp,là ra a=-b
\(\Rightarrow a+b=0\)
1/ Ta có:
\(\hept{\begin{cases}\left(a+\sqrt{a^2+2017}\right)\left(\sqrt{a^2+2017}-a\right)\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{a^2+2017}-a\right)\\\left(a+\sqrt{a^2+2017}\right)\left(\sqrt{b^2+2017}-b\right)\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{b^2+2017}-b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2017\left(b+\sqrt{b^2+2017}\right)=2017\left(\sqrt{a^2+2017}-a\right)\\2017\left(a+\sqrt{a^2+2017}\right)=2017\left(\sqrt{b^2+2017}-b\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+\sqrt{b^2+2017}=\sqrt{a^2+2017}-a\left(1\right)\\a+\sqrt{a^2+2017}=\sqrt{b^2+2017}-b\left(2\right)\end{cases}}\)
Lấy (1) + (2) vế theo vế ta được
\(a+b=0\)
Ta có : \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{x+y+z}{2}\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)
Vì \(\left(\sqrt{x}-1\right)^2\ge0\) , \(\left(\sqrt{y-1}-1\right)^2\ge0\), \(\left(\sqrt{z-2}-1\right)^2\ge0\) nên phương trình trên tương đương với
\(\hept{\begin{cases}\left(\sqrt{x}-1\right)^2=0\\\left(\sqrt{y-1}-1\right)^2=0\\\left(\sqrt{z-2}-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}}\)
Từ đó tính được : \(x^2+y^2+z^2=1^2+2^2+3^2=14\)
Ta có:
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\)
=\(\sqrt{x.1}+\sqrt{\left(y-1\right).1}+\sqrt{\left(z-2\right).1}\)
\(\le\frac{x+1}{2}+\frac{y-1+1}{2}+\frac{z-2+1}{2}\)
=\(\frac{x+y+z}{2}\)
Dấu"=" xảy ra khi \(\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)
Ta có:x2+y2+z2=1+22+32=14