Cho hai số dương x,y thỏa mãn: x+2y=3.CMR \(\frac{1}{x}+\frac{2}{y}\ge3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM - GM ta có :
\(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\)
\(\frac{2}{y}+2y=2\left(\frac{1}{y}+y\right)\ge2.2\sqrt{\frac{1}{y}.y}=4\)
Cộng vế với vế ta được : \(\frac{1}{x}+\frac{2}{y}+x+2y\ge6\)
\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}+3\ge6\Rightarrow\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Ta có:\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}\ge\frac{9}{x+2y}=\frac{9}{3}=3\left(đpcm\right)\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow x=y=1}\)
:))
easy!
Ta có:
\(\frac{1}{x^3\left(2y-x\right)}+x^2+y^2=\frac{1}{x^2\left(2xy-x^2\right)}+x^2+\left(y^2+x^2-x^2\right)\)
Áp dụng bất đẳng thức AM-GM cho hai số không âm,ta được:
\(x^2+y^2\ge2xy\)
\(\Rightarrow\frac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge\frac{1}{x^2\left(2xy-x^2\right)}+x^2+\left(2xy-x^2\right)\)
Áp dụng bất đẳng thức AM-GM một lần nữa,ta được:
\(\frac{1}{x^3\left(2y-x\right)}+x^2+y^2\ge3\sqrt[3]{\frac{1}{x^2\left(2xy-x^2\right)}\cdot x^2\cdot\left(2xy-x^2\right)}=3\left(đpcm\right)\)
xong!
Câu 1:
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)=x^2y^2+\frac{1}{x^2y^2}+2=x^2y^2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}+2\)
\(\ge\frac{1}{8}+2+\frac{255}{256x^2y^2}\)
Ta lại có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow1\ge16x^2y^2\)
\(\Rightarrow M\ge\frac{17}{8}+\frac{255}{16}=\frac{289}{16}\)
Dấu = xảy ra khi x=y=1/2
Áp dụng BDT Cauchy-Schwarz: \(\frac{1}{16}\left(\frac{1}{x+y}+\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{x+z}\right)\ge\frac{1}{3x+3y+2z}\)
CMTT rồi cộng vế với vế ta có.\(VT\le\frac{1}{16}\cdot4\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)=\frac{3}{2}\)
Dấu = xảy ra khi x=y=z=1
Áp dụng BĐT Cô - si cho 3 số không âm:
\(1+x^3+y^3\ge3\sqrt[3]{1.x^3y^3}=3xy\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3}}{\sqrt{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3}}{\sqrt{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3}}{\sqrt{zx}}\)
Cộng các vế của các BĐT trên, ta được:
\(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge\)\(\frac{\sqrt{3}}{\sqrt{xy}}\)\(+\frac{\sqrt{3}}{\sqrt{yz}}\)\(+\frac{\sqrt{3}}{\sqrt{zx}}\)
Tiếp tục áp dụng Cô - si:
\(BĐT\ge3\sqrt[3]{\frac{\sqrt{3}}{\sqrt{xy}}.\frac{\sqrt{3}}{\sqrt{yz}}.\frac{\sqrt{3}}{\sqrt{zx}}}=3\sqrt{3}\)
Vậy \(\frac{\sqrt{1+x^3+y^3}}{xy}\)\(+\frac{\sqrt{1+y^3+z^3}}{yz}\)\(+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
\(x^3+y^3+1=x^3+y^3+xyz\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
Tương tự:
\(y^3+z^3+1\ge yz\left(x+y+z\right);z^3+x^3+1\ge zx\left(x+y+z\right)\)
\(\Rightarrow VT\ge\frac{\sqrt{xy\left(x+y+z\right)}}{xy}+\frac{\sqrt{yz\left(x+y+z\right)}}{yz}+\frac{\sqrt{zx\left(x+y+z\right)}}{zx}\)
\(=\sqrt{x+y+z}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge\sqrt{3\sqrt[3]{xyz}}\cdot3\sqrt[3]{\frac{1}{\sqrt{xy}\cdot\sqrt{yz}\cdot\sqrt{zx}}}=3\sqrt{3}\)
Dấu "=" xảy ra tại \(x=y=z=1\)
Áp dụng BĐT Cauchy cho 2 số không âm, ta được:
\(\frac{1}{x}+\frac{2}{y}=2\ge2\sqrt{\frac{2}{xy}}\Leftrightarrow\sqrt{\frac{2}{xy}}\le1\Leftrightarrow xy\ge2\)
\(5x^2+y-4xy+y^2=\left(2x-y\right)^2+x^2+y\ge x^2+y\)
\(=x^2+\frac{y}{2}+\frac{y}{2}\ge3\sqrt[3]{x^2.\frac{y}{2}.\frac{y}{2}}=3\sqrt[3]{\frac{\left(xy\right)^2}{4}}\ge3\sqrt[3]{\frac{4}{4}}=3.1=3\)
\(T=21\left(x+\frac{1}{y}\right)+3\left(y+\frac{1}{x}\right)\)
\(=3\left(\frac{1}{x}+\frac{x}{9}\right)+21\left(\frac{1}{y}+\frac{y}{9}\right)+\frac{62x}{9}+\frac{2y}{3}\)
\(\ge6\sqrt{\frac{1}{x}\cdot\frac{x}{9}}+42\sqrt{\frac{1}{y}\cdot\frac{y}{9}}+\frac{62\cdot3}{9}+\frac{2\cdot3}{9}\)
\(=\frac{112}{3}\)
Đẳng thức xảy ra tại x=3;y=3
Áp dụng BĐT Bunhiacopxki :
\(\left[\left(\sqrt{x}\right)^2+\left(\sqrt{2y}\right)^2\right]\left[\left(\sqrt{\frac{1}{x}}\right)^2+\left(\sqrt{\frac{2}{y}}\right)^2\right]\ge\left(\sqrt{x}\cdot\sqrt{\frac{1}{x}}+\sqrt{2y}\cdot\sqrt{\frac{2}{y}}\right)^2\)
\(\Leftrightarrow\left(x+2y\right)\left(\frac{1}{x}+\frac{2}{y}\right)\ge\left(\frac{\sqrt{x}}{\sqrt{x}}+\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{y}}{\sqrt{y}}\right)^2\)
\(\Leftrightarrow3\cdot\left(\frac{1}{x}+\frac{2}{y}\right)\ge\left(1+2\right)^2\)
\(\Leftrightarrow3\cdot\left(\frac{1}{x}+\frac{2}{y}\right)\ge9\)
\(\Leftrightarrow\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)
Cách khác:
Với x,y >0.Áp dụng bđt svac -xơ có:
\(\frac{1}{x}+\frac{2}{y}=\frac{1}{x}+\frac{4}{2y}\ge\frac{\left(1+2\right)^2}{x+2y}=\frac{9}{3}=3\)
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)
Dấu "=" xảy ra <=> x=y=1
Đặt \(A=\frac{1}{x}+\frac{2}{y}\)
\(\Rightarrow\) \(3A=\left(\frac{1}{x}+\frac{2}{y}\right)\left(x+2y\right)\) (do \(x+2y=3\) )
nên \(3A=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\)
Khi đó, áp dụng bất đẳng thức \(AM-GM\) đối với bộ số không âm gồm \(\left(\frac{x}{y};\frac{y}{x}\right)\) , ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Do đó, \(3A\ge2.2+5=9\)
Hay nói cách khác, \(A\ge3\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x=y\\x+2y=3\end{cases}\Leftrightarrow}\) \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy, \(A_{min}=3\) \(\Leftrightarrow\) \(x=y=1\)
dùng cô si ( AM - GM ) thêm bớt nhanh hơn .
dự đoán điểm rơi x = y = 1
Gải : \(\frac{1}{x}+x\ge2\sqrt{\frac{1}{x}.x}=2\left(1\right).\)
\(\frac{2}{y}+2y\ge2\sqrt{\frac{2}{y}.2y}=4\left(2\right).\)
cống vế với vế của (1) và (2) ta được : \(\frac{1}{x}+\frac{2}{y}+3\ge6\) ( do x + 2y = 3 )
=> \(\frac{1}{x}+\frac{2}{y}\ge3\)dấu "=" xẩy ra khi x = y = 1