Tìm đa thức f(x) biết rằng: f(x) chia cho x+2 dư 10, f(x) chia cho x-2 dư 24, f(x) chia cho \(x^2-4\)được thương là -5x và còn dư
TRÌNH BÀY RÕ LỜI GIẢI GIÚP MÌNH VS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của phép chia f(x) cho (x+2) là A(x); cho (x-2) là B(x)
Theo bài ra ta có: f(x) = (x+2).A(x) + 10 \(\Rightarrow\) f(-2) = 10
f(x) = (x-2).B(x) + 24 f(2) = 24
Gọi số dư khi chia f(x) cho x2 - 4 là ax + b
Ta có: \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\)
\(=\left(x-2\right)\left(x+2\right)\left(-5x\right)+ax+b\)
Vì biểu thức trên đúng với mọi x nên ta lần lượt thay \(x=-2;\)\(x=2\)vào biểu thức được:
\(f\left(-2\right)=-2a+b=10\) \(\Rightarrow\) \(a=3,5\)
\(f\left(2\right)=2a+b=24\) \(b=7\)
Vậy \(f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+3,5x+7\)
\(=-5x^3+23,5x+7\)
P.s: tham khảo nhé
bài làm sai rồi
nếu a=3,5 và b=7 thì -2a+b=0
mà -2a+b=10
=> a=3,5 và b=7 (vô lí)
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
ta có số chia là x2-4 nên số dư cảu phép chia sẽ có dạng ax+b
=>f(x)=(x2-4)(-5x)+ax+b
do f(x) chia x+2 dư 10 =>f(-2)=10=>b-2a=10 (1)
vì f(x)chia x-2 dư 22=>f(2)=22=>2a+b=22 (2)
ta lấy (2)-(1) được 2a+b+2a-b=22-10 <=>4a=12 <=>a=3
=>b=16
=>f(x)=(x2-4)(-5x)+3x+16=-5x3+23x+16
vậy f(x)=-5x3+23x+16
Lời giải:
Giả sử $f(x)$ chia $(x-1)(x-2)$ được thương là 2 và dư $ax+b$
Khi đó: $f(x)=2(x-1)(x-2)+ax+b(*)$
Vì $f(x)$ chia $x-1$ dư $2$, chia $x-2$ dư $3$ nên $f(1)=2; f(2)=3$
Thay vào $(*)$ thì:
$2=f(1)=a+b$
$3=f(2)=2a+b$
$\Rightarrow a=1; b=1$
Vậy dư là $x+1$. Đa thức $f(x)=2(x-1)(x-2)+x+1=2x^2-5x+5$
Theo định lí Bezout, ta có:
\(f\left(x\right):\left(x+2\right)\) dư 10 \(\Rightarrow f\left(-2\right)=10\)
\(f\left(x\right):\left(x-2\right)\) dư 24 \(\Rightarrow f\left(2\right)=24\)
Vì \(f\left(x\right):\left(x^2-4\right)\) được thương là -5x và còn dư
Nên ta giả sử số dư của phép chia trên là ax + b
\(\Rightarrow f\left(x\right)=\left(x^2-4\right).\left(-5x\right)+ax+b\)
\(\Rightarrow f\left(x\right)=-5x^3+20x+ax+b\)
Vì \(f\left(-2\right)=10\left(cmt\right)\)
\(\Rightarrow-5\left(-2\right)^3+20.\left(-2\right)+ax+b=10\)
\(\Rightarrow ax+b=10\)
\(\Rightarrow-2a+b=10\left(1\right)\)
Vì \(f\left(2\right)=24\left(cmt\right)\)
\(\Rightarrow-5.2^3+20.2+ax+b=24\)
\(\Rightarrow ax+b=24\)
\(\Rightarrow2a+b=24\left(2\right)\)
Từ (1) và (2) suy ra:
\(-2a+b+2a+b=34\)
\(2b=34\)
\(b=17\)
\(\Rightarrow a=3,5\)
\(\Rightarrow ax+b=3,5x+17\)
\(\Rightarrow f\left(x\right)=-5x^3+20x+3,5x+17\)
f(x)= (x-3). Q(x)+2 moi X
f(x)=(x+4).H(x)+9 moi X
=>f(3)= 2
f( -4)= 9
f(x)= (x^2+x-12).(x^2+3)+ ax +b
=(x-3)(x+4). (x^2+3) +ax+b
=>f(3)= 3a+b=2
f(-4)=b -4a=9
=>a= -1; b=5
=> f(x)=(x^2+x-12)(x^2+3)-x+5
= x^4+x^3-9x^2+2x-31
Ta thấy :
x2 +x -12 = x2 +4x - 3x-12
= x(x+4) - 3(x+4)
= (x-3)(x+4)
Vì :
f(x) chia (x-1)(x+4) được x2 + 3 và còn dư
Mà số dư có bậc không vượt quá 1
=> f(x) = (x-3)(x+4)(x2 + 3) +ax +b
Ta có :
f(x) chia (x-3) dư 2
=> f(3)=2
=> 3a+b=2
f(x) chia (x+4) dư 9
=> f(-4)=9
=> b-4a=9
=> 3a+b-b+4a = 2-9
7a = -7
=> a= -1
=> -3 + b =2
b=5
Vậy đa thức f(x) = (x-3)(x+4)(x2 + 3) - x + 5
f(x) chia x+2 dư 10⇒f(−2)=10
f(x) chia x−2 dư 24⇒f(2)=24
f(x) chia x^2−4 sẽ có số dư cao nhất là đa thức bậc 1
⇒f(x)=(x^2−4).(−5x)+ax+b (1)
Lần lượt thay x=2 và x=−2 vào (1):
{24=2a+b {a=7/2 b=17
⇒f(x)=−5x(x^2−4)+7/2x+17=−5x^3+47/2x+17
tk nha
Từ \(f\left(x\right)\)chia cho \(x^2-4\), ta thấy đa thức \(x^2-4\)có bậc 2 nên đa thức dư là đa thức không quá bậc là 1.
Do đó gọi đa thức dư là \(ax+b\)khi chia \(f\left(x\right)\)cho \(x^2-4\). Theo đề bài, ta có:
\(f\left(x\right)=-5x\left(x^2-4\right)+ax+b\)
\(\Rightarrow f\left(x\right)=-5x\left(x-2\right)\left(x+2\right)+ax+b\left(1\right)\)
Thay \(x=2\)vào đẳng thức (1), ta được:
\(f\left(2\right)=\left(-5\right).2\left(2-2\right)\left(2+2\right)+2a+b\)
\(\Rightarrow f\left(2\right)=0+2a+b=2a+b\)
Gọi đa thức thương là \(A\left(x\right)\)khi chia \(f\left(x\right)\)cho \(x-2\), theo đề bài, ta có:
\(f\left(x\right)=A\left(x\right)\left(x-2\right)+24\left(2\right)\)
Thay \(x=2\)vào đẳng thúc (2), ta được:
\(f\left(2\right)=A\left(2\right)\left(2-2\right)+24\)
\(\Rightarrow f\left(2\right)=24\)
Do đó \(2a+b=24\left(3\right)\)
Gọi đa thức thương là \(B\left(x\right)\)khi chia \(f\left(x\right)\)cho \(x+2\), theo đề bài, ta có:
\(f\left(x\right)=B\left(x\right)\left(x+2\right)+10\left(4\right)\)
Thay \(x=-2\)vào đẳng thức (4), ta được:
\(f\left(-2\right)=B\left(-2\right)\left(-2+2\right)+10\)
\(\Rightarrow f\left(-2\right)=10\)
Thay \(x=-2\)vào đẳng thức (1), ta được:
\(f\left(-2\right)=\left(-5\right)\left(-2\right)\left(-2-2\right)\left(-2+2\right)-2a+b\)
\(\Rightarrow f\left(-2\right)=-2a+b\)
Do đó : \(-2a+b=10\left(5\right)\)
Từ (3) và (5).
\(\Rightarrow2a+b-2a+b=24+10\)
\(\Rightarrow2b=34\)
\(\Rightarrow b=17\)
Do đó \(2a+17=24\)
\(\Rightarrow2a=7\Rightarrow a=\frac{7}{2}\)
Thay vào đẳng thức (1), ta được:
\(f\left(x\right)=-5x\left(x^2-4\right)+\frac{7}{2}x+17\)
\(\Rightarrow f\left(x\right)=-5x^3+20x+\frac{7}{2}x+17\)
\(\Rightarrow f\left(x\right)=-5x^3+\frac{47}{2}x+17\)