Tính: \(\frac{12}{0,\left(2012\right)}+\frac{12}{0,0\left(2012\right)}+\frac{12}{0,00\left(2012\right)}+...+\frac{12}{0,0000000\left(2012\right)}\) (Ghi kết quả dưới dạng hỗn số)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét : \(f\left(x\right)+f\left(1-x\right)=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{1-3\left(1-x\right)+3\left(1-x\right)^2}\)
\(=\frac{x^3}{1-3x+3x^2}+\frac{\left(1-x\right)^3}{3x^2-3x+1}=\frac{\left(x+1-x\right)\left(x^2+x^2-2x+1+x^2-x\right)}{3x^2-3x+1}=\frac{3x^2-3x+1}{3x^2-3x+1}=1\)
Áp dụng ta có :
\(A=\left[f\left(\frac{1}{2012}\right)+f\left(\frac{2011}{2012}\right)\right]+\left[f\left(\frac{2}{2012}\right)+f\left(\frac{2010}{2012}\right)\right]+...+\left[f\left(\frac{1006}{2012}\right)+f\left(\frac{1006}{2012}\right)\right]\)
\(=1+1+...+1\)(Có tất cả 1006 số 1)
\(=1006\)
\(\frac{298}{719}:\left(\frac{1}{4}+\frac{1}{12}-\frac{1}{3}\right)-\frac{2011}{2012}\)
\(=\frac{298}{719}:0-\frac{2011}{2012}\)
Giá trị phép tính không tồn tại