Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)
\(S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-1\)
Ta đặt: \(P=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)
=> \(2P=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\)
=> \(2P-P=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\)
=> \(P=1-\frac{1}{64}\)
Mà \(S=P-1\)
=> \(S=1-\frac{1}{64}-1=-\frac{1}{64}\)
Vậy \(S=-\frac{1}{64}\)
N = 3/2 + 5/4 + 9/8 + 17/16 + 33/32 + 65/64 - 7
N = (1 + 1/2) + (1 + 1/4) + (1 + 1/8) + (1 + 1/16) + (1 + 1/32) + (1 + 1/64) - 7
N = (1 + 1 + 1 + 1 + 1 + 1 ) + (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64) - 7
N = 6 - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64) - 7
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32
2A - A = (1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32) - (1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64)
A = 1 - 1/64
N = 6 - (1 - 1/64) - 7
N = 6 - 1 + 1/64 - 7
N = 5 + 1/64 - 7
N = -2 + 1/64
N = -128/64 + 1/64
N = -127/64
bạn soyen_Tiểu bàng giải sao dòng 3 đang cộng đến dòng 9 lại chuyển thành trừ vậy
a: \(=3\cdot\left(\dfrac{1}{4}-\dfrac{6}{7}+\dfrac{8}{21}\right)\)
\(=3\cdot\left(\dfrac{21}{84}-\dfrac{72}{84}+\dfrac{32}{84}\right)\)
\(=\dfrac{-19}{28}\)
b: \(=\dfrac{-2}{3}\left(\dfrac{1}{9}-\dfrac{1}{6}-\dfrac{1}{11}\right)\)
\(=\dfrac{-2}{3}\cdot\dfrac{-29}{198}=\dfrac{29}{99\cdot3}=\dfrac{29}{297}\)
c: \(=\dfrac{-3}{7}+\dfrac{4}{25}+\dfrac{5}{16}+\dfrac{3}{16}\)
\(=\dfrac{-75+28}{175}+\dfrac{1}{2}\)
\(=\dfrac{-47}{175}+\dfrac{1}{2}=\dfrac{-94+175}{350}=\dfrac{81}{350}\)
d: \(=\dfrac{-4}{9}\cdot\left(\dfrac{1}{26}-\dfrac{1}{2}-\dfrac{1}{8}\right)\)
\(=\dfrac{-4}{9}\cdot\dfrac{-61}{104}=\dfrac{61}{26\cdot9}=\dfrac{61}{234}\)
\(\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\)\(\frac{65}{64}-7\)
\(=\frac{96}{64}+\frac{80}{64}+\frac{72}{64}+\frac{66}{64}+\frac{65}{64}-7\)
\(=\frac{96+80+72+66+64}{64}-7\)
\(=\frac{378}{64}-\frac{7}{1}\)
\(=\frac{189}{32}-\frac{224}{32}\)
\(=\frac{-35}{32}\)
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{4}\right)+\left(1+\frac{1}{8}\right)+\left(1+\frac{1}{16}\right)+\left(1+\frac{1}{32}\right)+\left(1+\frac{1}{64}\right)-7\)
\(S=\left(1+1+....+1\right)+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-7\)
\(S=6+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+....+\left(\frac{1}{32}-\frac{1}{64}\right)\right]-7\)
\(S=6+\left(1-\frac{1}{64}\right)-7\)
\(S=6+\frac{63}{64}-7\)
\(S=\frac{447}{64}-7=-\frac{1}{64}\)
b: A=1/3+1/9+...+1/3^10
=>3A=1+1/3+...+1/3^9
=>A*2=1-1/3^10=(3^10-1)/3^10
=>A=(3^10-1)/(2*3^10)
c: C=3/2+3/8+3/32+3/128+3/512
=>4C=6+3/2+...+3/128
=>3C=6-3/512
=>C=1023/512
d: A=1/2+...+1/256
=>2A=1+1/2+...+1/128
=>A=1-1/256=255/256
\(S=\frac{3}{2}+\frac{5}{4}+\frac{9}{8}+\frac{17}{16}+\frac{33}{32}+\frac{65}{64}-7\)
\(S=1+\frac{1}{2}+1+\frac{1}{4}+1+\frac{1}{8}+1+\frac{1}{16}+1+\frac{1}{32}+1+\frac{1}{64}-7\)
\(S=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}-1\)
\(S+1=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}+\frac{1}{2^6}\)
\(2\left(S+1\right)=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+\frac{1}{2^5}\)
\(2\left(S+1\right)-\left(S+1\right)=S+1=1-\frac{1}{2^6}=\frac{63}{64}\)
\(S=\frac{63}{64}-1\)
1/ 2 + 2 = 4
2/ 4 + 4 = 8
3/ 8 + 8 = 16
4/ 16 + 16 = 32
5/ 32 + 32 =64
6/ 64 + 64 =128
7/ 128 + 128 =256
8/ 256 + 256 =512
9/ 521 + 512 =1033
10/ 2048 + 2048 =4096